Effect of process parameter and gate size on gate freeze time in injection molding by using simulation software

Author(s):  
Juntima Kaetkaew ◽  
Sathaporn Chatakom
Polymers ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 380
Author(s):  
Martin Traintinger ◽  
Roman Christopher Kerschbaumer ◽  
Bernhard Lechner ◽  
Walter Friesenbichler ◽  
Thomas Lucyshyn

Injection molding of rubber compounds is an easily conducted yet sophisticated method for rubber processing. Simulation software is used to examine the optimal process conditions, identify failure scenarios, and save resources. Due to the complexity of the entire process, various aspects have to be considered in the numerical approach. This contribution focused on a comparison of process simulations with various definitions of the material’s inlet temperature, ranging from a stepwise increase, but constant temperature, to an exact axial mass temperature profile prior to injection. The latter was obtained with a specially designed, unique test stand consisting of a plasticizing cylinder equipped with pressure sensors, a throttle valve for pressure adjustments, and a measurement bar with thermocouples for the determination of the actual state of the mass temperature. For the verification of the theoretical calculations, practical experiments were conducted on a rubber injection molding machine equipped with the mold used in the simulation. The moldings, obtained at different vulcanization time, were characterized mechanically and the results were normalized to a relative degree of cure in order to enable comparison of the real process and the simulation. Considering the actual state of the mass temperature, the simulation showed an excellent correlation of the measured and calculated mass temperatures in the cold runner. Additionally, the relative degree of cure was closer to reality when the mass temperature profile after dosing was applied in the simulation.


2000 ◽  
Author(s):  
Jim Nerone ◽  
Karthik Ramani

Abstract New aluminum alloys, QC-7® and QE-7®, have thermal conductivities four times greater than traditional tool steels, and have significantly increased strength and hardness compared to traditional aluminum materials. Molds were constructed of P-20 tool steel and QE-7® aluminum and were used to provide experimental data regarding thermal mold characteristic and confirm injection molding simulation predictions using C-Mold®. The relationships between cooling time reduction (using aluminum alloys) and polymer type, cooling channel depth, part wall thickness, and coolant temperature were explored both experimentally and using simulation software. It was shown that the potential reduction in cooling time varied from 5% to 25%. The most significant percentage improvements were observed in parts with part wall thickness of 0.05″ to 0.10″ and in molds with cooling channels at a depth ratio (D/d) of 2.0. The thermal pulses in the steel mold 0.10″ from the surface were approximately 63% larger than in aluminum mold.


2020 ◽  
Vol 8 (6) ◽  
pp. 4070-4077

Injection molding is one of the very significant methodologies in the plastic manufacturing industry. Production of any shape in the injection molding, mold with cavity must require. For this mold making three phases were involved in this project starting from design, analysis, manufacturing respectively. The objective of this project is to introduce detailed steps on design mold and using the simulation software to analyze the material flow, temperature and pressure characteristics of the product. The product designed and analyzed for this project is SAFE HOLDER and CAM. The manufacturing of mold is done by using advanced machinery such as CNC. The design and analysis of this product and mold were made by the designing analysis software CATIA V5, ANSYS 15.0, which is then stimulated by the use of Fluid Flow (Fluent) tool. This project was very useful in knowing the fluid characteristic behavior subjected to flowing inside the mold and also observed the variation of values with respect to given values at each stage. In this project, the analysis performed with taking polypropylene as a fluid from propylene polymer and steel as solid material for the die with inlet values are 230℃ temperature and 15m/s velocity.


2000 ◽  
Author(s):  
Baojiu Lin ◽  
Won Gil Ryim

Abstract Improvements in part quality and cost reduction are the primary objectives of CAE use in the injection molding industry. Engineers use advanced injection molding simulation software to analyze and verify their part designs. Traditionally, engineers have had to rerun simulations to verify the effects of changes in gate locations. For complex models, simulations are very time consuming. To reduce the design cycle time, a Design Optimization Module is developed by C-MOLD. One of the functions of this new software module is to automatically select optimal gate locations. This innovative technology is the result of close R&D collaboration between C-MOLD and LG-PRC in Korea. An overview of gate location optimization technology is presented in this paper, and several examples are also presented as illustration.


1995 ◽  
Vol 387 ◽  
Author(s):  
Andreas Tillmann

AbstractA new strategy based algorithm to optimize process parameter uniformity (e.g.sheet resistance, oxide thickness) and temperature uniformity on wafers in a commercially available Rapid Thermal Processing (RTP) system with independent lamp control is described. The computational algorithm uses an effective strategy to minimize the standard deviation of the considered parameter distribution. It is based on simulation software which is able to calculate the temperature and resulting parameter distribution on the wafer for a given lamp correction table. A cyclical variation of the correction values of all lamps is done while minimizing the standard deviation of the considered process parameter. After the input of experimentally obtained wafer maps the optimization can be done within a few minutes. This technique is an effective tool for the process engineer to use to quickly optimize the homogeneity of the RTP tool for particular process requirements. The methodology will be shown on the basis of three typical RTP applications (Rapid Thermal Oxidation, Titanium Silicidation and Implant Annealing). The impact of variations of correction values for single lamps on the resulting process uniformity for different applications will be discussed.


2017 ◽  
Vol 9 (1) ◽  
pp. 79-88
Author(s):  
Piotr Tutak

Abstract This article presents an application of moldflow simulation to optimize the injection molding process of charge air cooler plastic tank. The work shows the advantages of this kind of simulation software and information that it can provide. It also explains how big role today play simulation softwares and how they can improve product and reduce development cost.


2016 ◽  
Vol 4 (2) ◽  
Author(s):  
David Maximilian Marhöfer ◽  
Guido Tosello ◽  
Aminul Islam ◽  
Hans Nørgaard Hansen

Just as in conventional injection molding of plastics, process simulations are an effective and interesting tool in the area of micro-injection molding. They can be applied in order to optimize and assist the design of the microplastic part, the mold, and the actual process. Available simulation software is however actually made for macroscopic injection molding. By means of the correct implementation and careful modeling strategy though, it can also be applied to microplastic parts, as it is shown in the present work. Process simulations were applied to two microfluidic devices (a microfluidic distributor and a mixer). The paper describes how the two devices were meshed in the simulations software to obtain a proper simulation model and where the challenges arose. One of the main goals of the simulations was the investigation of the filling of the parts. Great emphasis was also on the optimization of selected gate designs for both plastic parts. Subsequently, the simulation results were used to answer the question which gate design was the most appropriate with regard to the process window, polymer flow, and part quality. This finally led to an optimization of the design and the realization of this design in practice as actual steel mold. Additionally, the simulation results were critically discussed and possible improvements and limitations of the gained results and the deployed software were described. Ultimately, the simulation results were validated by cross-checking the flow front behavior of the polymer flow predicted by the simulation with the actual flow front at different time steps. These were realized by molding short shots with the realized molds and were compared to the simulations at the global, i.e., part level and at the local, i.e. feature level.


Sign in / Sign up

Export Citation Format

Share Document