Accounting for system-level controls during early-stage design

Author(s):  
Tianlei Zhang ◽  
R. A. Dougal ◽  
Yucheng Zhang
Author(s):  
N. Ashwin Bharadwaj ◽  
James T. Allison ◽  
Randy H. Ewoldt

Rheological material properties are high-dimensional function-valued quantities, such as frequency-dependent viscoelastic moduli or non-Newtonian shear viscosity. Here we describe a process to model and optimize design targets for such rheological material functions. For linear viscoelastic systems, we demonstrate that one can avoid specific a priori assumptions of spring-dashpot topology by writing governing equations in terms of a time-dependent relaxation modulus function. Our approach embraces rheological design freedom, connecting system-level performance to optimal material functions that transcend specific material classes or structure. This technique is therefore material agnostic, applying to any material class including polymers, colloids, metals, composites, or any rheologically complex material. These early-stage design targets allow for broadly creative ideation of possible material solutions, which can then be used for either material-specific selection or later-stage design of novel materials.


2021 ◽  
Vol 1 ◽  
pp. 1163-1172
Author(s):  
Rachel Meredith Moore ◽  
Anna-Maria Rivas McGowan ◽  
Nathaneal Jeyachandran ◽  
Kathleen H. Bond ◽  
Daniel Williams ◽  
...  

AbstractThe earliest stage in the innovation lifecycle, problem formulation, is crucial for setting direction in an innovation effort. When faced with an interesting problem, engineers commonly assume the approximate solution area and focus on ideating innovative solutions. However, in this project, NASA and their contracted partner, Accenture, collaboratively conducted problem discovery to ensure that solutioning efforts were focused on the right problems, for the right users, and addressing the most critical needs—in this case, exploring weather tolerant operations (WTO) to further urban air mobility (UAM) – known as UAM WTO. The project team leveraged generative, qualitative methods to understand the ecosystem, players, and where challenges in the industry are inhibiting development. The complexity of the problem area required that the team constantly observe and iterate on problem discovery, effectively “designing the design process.” This paper discusses the approach, methodologies, and selected results, including significant insights on the application of early-stage design methodologies to a complex, system-level problem.


2021 ◽  
Vol 1 ◽  
pp. 11-20
Author(s):  
Owen Freeman Gebler ◽  
Mark Goudswaard ◽  
Ben Hicks ◽  
David Jones ◽  
Aydin Nassehi ◽  
...  

AbstractPhysical prototyping during early stage design typically represents an iterative process. Commonly, a single prototype will be used throughout the process, with its form being modified as the design evolves. If the form of the prototype is not captured as each iteration occurs understanding how specific design changes impact upon the satisfaction of requirements is challenging, particularly retrospectively.In this paper two different systems for digitising physical artefacts, structured light scanning (SLS) and photogrammetry (PG), are investigated as means for capturing iterations of physical prototypes. First, a series of test artefacts are presented and procedures for operating each system are developed. Next, artefacts are digitised using both SLS and PG and resulting models are compared against a master model of each artefact. Results indicate that both systems are able to reconstruct the majority of each artefact's geometry within 0.1mm of the master, however, overall SLS demonstrated superior performance, both in terms of completion time and model quality. Additionally, the quality of PG models was far more influenced by the effort and expertise of the user compared to SLS.


Procedia CIRP ◽  
2015 ◽  
Vol 28 ◽  
pp. 125-130 ◽  
Author(s):  
M. Colledani ◽  
L. Bolognese ◽  
D. Ceglarek ◽  
F. Franchini ◽  
C. Marine ◽  
...  

1988 ◽  
Vol 25 (04) ◽  
pp. 239-252
Author(s):  
G. Robed Lamb

Even though in 1987 there were only a dozen SWATH (smali-waterplane-area twin-hull) craft and ships afloat around the world, word of their markedly superior seakeeping performance is spreading rapidly. The number of SWATH vessels is likely to double within five years. As in many other areas of technology, the United States and Japan are the acknowledged leaders in the development and practical application of the SWATH concept. This paper reviews the characteristics of existing SWATH craft and ships from the standpoint of the stated seakeeping objective. Hull form differences between four SWATH craft and ships, including the Navy's SSP Kairnalino, are analyzed and interpreted. Important considerations for the early-stage design of a SWATH ship are discussed. Differences in the range of feasible hull form geometries for coastal areas and unrestricted ocean operations, and for low-speed versus moderately high-speed applications, are pointed out.


2021 ◽  
Author(s):  
Jonathan M. Smyth ◽  
Robert J. Miller

Abstract This paper proposes a new duty-based Smith Chart as part of an improved method of selecting the geometric topology of compressors (axial, mixed or radial) in the earliest stage of design. The method has a number of advantages over previous methods: it is based on the non-dimensional flow and the non-dimensional work, which aligns with the aerodynamic function of the compressor and is therefore more intuitive than specific speed and specific diameter. It is based on a large number of consistently designed compressor rotors which have been computationally predicted using RANS CFD. Most importantly, it provides the designer not only with a choice of topology but also with the complete meridional geometry of the compressor, its blade design and the number of blades. This fidelity of geometry at the very early stage of design allows the designer to undertake a true systems design optimization (noise, manufacturing, packaging constraints and cost). This has the major advantage of significantly reducing early stage design times and costs and allows the designer to explore completely new products more quickly.


Sign in / Sign up

Export Citation Format

Share Document