scholarly journals DESIGNING THE DESIGN PROCESS FOR EARLY PROBLEM DISCOVERY FOR A COMPLEX AERONAUTICS SYSTEMS CHALLENGE

2021 ◽  
Vol 1 ◽  
pp. 1163-1172
Author(s):  
Rachel Meredith Moore ◽  
Anna-Maria Rivas McGowan ◽  
Nathaneal Jeyachandran ◽  
Kathleen H. Bond ◽  
Daniel Williams ◽  
...  

AbstractThe earliest stage in the innovation lifecycle, problem formulation, is crucial for setting direction in an innovation effort. When faced with an interesting problem, engineers commonly assume the approximate solution area and focus on ideating innovative solutions. However, in this project, NASA and their contracted partner, Accenture, collaboratively conducted problem discovery to ensure that solutioning efforts were focused on the right problems, for the right users, and addressing the most critical needs—in this case, exploring weather tolerant operations (WTO) to further urban air mobility (UAM) – known as UAM WTO. The project team leveraged generative, qualitative methods to understand the ecosystem, players, and where challenges in the industry are inhibiting development. The complexity of the problem area required that the team constantly observe and iterate on problem discovery, effectively “designing the design process.” This paper discusses the approach, methodologies, and selected results, including significant insights on the application of early-stage design methodologies to a complex, system-level problem.


2021 ◽  
pp. 62-77
Author(s):  
Negar Kalantar ◽  
Alireza Borhani

After sufficient consideration for the proper balance between material and formal constraints, this chapter describes a pedagogical approach that transforms the education of future architects through a 'form-finding' method, allowing the material to accommodate itself to form and celebrate its own nature. To enhance pedagogical improvement of foundational studies in architecture and further explore this pedagogy based on form-finding in early design education, this chapter also presents the challenges to integrating materiality within the design process, as derived from the incorporation of experimental form-finding methods into early-stage design.



Author(s):  
Catherine Elsen ◽  
Anders Häggman ◽  
Tomonori Honda ◽  
Maria C. Yang

Sketching and prototyping of design concepts have long been valued as tools to support productive early stage design. This study investigates previous findings about the interplay between the use and timing of use of such design tools. This study evaluates such tools in the context of team design projects. General trends and statistically significant results about “sketchstorming” and prototyping suggest that, in certain constrained contexts, the focus should be on the quality of information rather than on the quantity of information generated, and that prototyping should begin as soon as possible during the design process. Ramifications of these findings are discussed in the context of educating future designers on the efficient use of design tools.



Author(s):  
N. Ashwin Bharadwaj ◽  
James T. Allison ◽  
Randy H. Ewoldt

Rheological material properties are high-dimensional function-valued quantities, such as frequency-dependent viscoelastic moduli or non-Newtonian shear viscosity. Here we describe a process to model and optimize design targets for such rheological material functions. For linear viscoelastic systems, we demonstrate that one can avoid specific a priori assumptions of spring-dashpot topology by writing governing equations in terms of a time-dependent relaxation modulus function. Our approach embraces rheological design freedom, connecting system-level performance to optimal material functions that transcend specific material classes or structure. This technique is therefore material agnostic, applying to any material class including polymers, colloids, metals, composites, or any rheologically complex material. These early-stage design targets allow for broadly creative ideation of possible material solutions, which can then be used for either material-specific selection or later-stage design of novel materials.





Author(s):  
W. Lawrence Neeley ◽  
Kirsten Lim ◽  
April Zhu ◽  
Maria C. Yang

While rapid prototyping has proved to be an invaluable resource for expediting particular phases of the design process, its decreasing cost of operation and increasing accessibility reveal greater potential for these tools to substantially impact the design process itself. While many studies have investigated the advantages of creating and interacting with physical models in engineering design, this study explores the value of delaying decisions and pursuing many prototypes as it applies to individual designers in the earliest phases of the design process. Inspired by The Second Toyota Paradox, we propose the use of Kolb’s theory of experiential learning to reconcile the implications of set-based rather than point-to-point engineering with the value of an individual designer’s learning through interactions with concrete objects. We compared the performance of engineering students in a design challenge. The independent variable was the number of prototypes the participant was required to produce in the first iteration. Participants who were instructed to produce more prototypes in the same amount of time in which their control counterparts were only required to produce one expressed much higher levels of time constraint and dissatisfaction in their primary prototypes. However, multiple-design participants’ prototypes performed better, showed significantly greater improvement between iterations; in addition, satisfaction increased significantly after completion of the final prototype. We look to Kolb’s theory of experiential learning and an individualized application of corporate concurrent engineering to suggest a new design process heavy in low-fidelity, low-quality physical models in early design stages.



2010 ◽  
Author(s):  
Fongloon Peter Pan ◽  
Ronald Schoon ◽  
Suresh Putta ◽  
Anil Ogale ◽  
Cheng Chen


2020 ◽  
Vol 12 (23) ◽  
pp. 10118
Author(s):  
Miren Juaristi ◽  
Thaleia Konstantinou ◽  
Tomás Gómez-Acebo ◽  
Aurora Monge-Barrio

Adaptive Opaque Facades (AOF) is an innovative concept with potential to achieve low carbon energy buildings. However, so far AOF are not integrated in the construction industry. One remarkable issue that designers have when dealing with alternative low-carbon technologies, such as AOF, is the absence of previous built experiences and the lack of specialised technical knowledge. Design roadmaps can be convenient solutions to guide pioneer low carbon technology applications. This work presents a roadmap to assist the performance-based early-stage design process of Adaptive Opaque Facades. Previous research developed new approaches and tools to assist on the construction definition of AOF, so that their adaptive thermal performance was considered when specific design decisions needed to be made. The roadmap presented in this paper organises the implementation sequence of each methodological approach and tools in different design stages, which aims to provide a holistic design approach for AOF. The usability of the roadmap was validated in a workshop called “Performance-based Design and Assessment of Adaptive Facades” with master students representing the target group of this roadmap. Even though these students had never heard about AOF before, they could successfully design, define the early-stage characteristics of an AOF and quantify the thermal performance of their AOF designs. The roadmap was proven to be a useful support, which might make the implementation of AOF more approachable in the future.



2015 ◽  
Author(s):  
Igor Mizine ◽  
Charles Rogers ◽  
Bruce D. Wintersteen

The objective of the ship design synthesis process is to derive a ship’s physical and performance characteristics based on mission requirements and selected technology and configuration options. To accomplish this objective an effective compromise must be achieved between the many competing requirements and constraints that form the available design space. The engineering disciplines that are addressed during the design synthesis process include; mission systems and cargo requirements, hull form geometry, hull subdivision, deckhouse geometry and subdivision, structures, appendages, resistance, propulsors, machinery arrangements, weight estimates, required arrangeable area and volume, intact stability and seakeeping. The hull form is a critical component of the design synthesis process. The hull is subdivided with decks and bulkheads to establish the compartment configuration (to the watertight compartment level) within the hull and to determine if the required mission capabilities and systems can be accommodated. The hull form is the principal boundary for the structural design. Required appendages must be integrated with the hull form. The propulsor design (propellers, waterjets, etc.) depends on resistance and the water flow around the hull form. The hull form significantly drives the propulsion power required and significantly impacts the location of the principle machinery equipment within the hull. While the weight estimates draw directly from the structural design and machinery equipment and other known data (mission systems), many of the other weight groups are estimated by algorithms. These algorithms are very dependent on hull volume and the distribution of that volume within the hull. Hull hydrostatics, stability and seakeeping are all very dependent on the hull form. The investigation of hull form variations during early stage design has long been limited by the capabilities present in the available design tools and their supporting framework. While some excellent hulls have been designed in parallel or preceding the overall ship design process, the limitations in design tools and their integration have often left the design process with a significant unknown as to whether the selected hull form is truly the best configuration for the ship and its mission. The hull form has a significant influence on almost every subsystem and discipline involved in ship design, not just hydrodynamics The routine Navy practice during early stage design has been to perform analysis based on a single baseline hull form point design, which is usually derived from dimensional scaling of existing designs or prototypes. This practice limits analysis of the hull form related characteristics and performance in concert with other tradeoffs and analysis of the disciplines that are very much influenced by the hull form. In some cases, this approach has perpetuated the undesirable characteristics of the selected starting hull form. In many, if not most recent designs, the limitations of our design process capabilities have produced less than optimal hull form configurations, especially in view of the operational profile, which determines the life cycle cost. In addition, late design improvements in hull form such as stern flaps or bulb changes result in the ship exceeding the design requirements that drive cost into the ship, i.e. larger engines installed then required to meet the ship’s KPP for speed. The paper explains how it is possible to overcome this limitation and how to restructure the ship design processes to facilitate effective investigation of hull form variations as part of the design synthesis process. The development of the hull form along with the overall development of the ship design configuration can be effectively integrated during the early Mizine Hull Form Exploration in the Early Stage of Design 2 stages of design when sufficient flexibility remains to enable the most effective design across all disciplines. This paper addresses the process, tools, and methodologies the authors have been developing and applying for several ship design projects to enable the effective development of the hull form and the investigation of hull form variations and their impact on the overall ship effectiveness. The approach used to facilitate the effective integration of the range of design and analysis tools necessary to support the process is described. The methodologies and theories used to investigate the potential range of hull form alternatives and assess their relative performance are presented. Examples of analyses done for actual design projects are provided, along with lessons-learned and recommendations for further refinements and improvements to the processes presented.



2021 ◽  
pp. 106968
Author(s):  
V. Cipolla ◽  
K. Abu Salem ◽  
G. Palaia ◽  
V. Binante ◽  
D. Zanetti


2021 ◽  
Vol 1 ◽  
pp. 11-20
Author(s):  
Owen Freeman Gebler ◽  
Mark Goudswaard ◽  
Ben Hicks ◽  
David Jones ◽  
Aydin Nassehi ◽  
...  

AbstractPhysical prototyping during early stage design typically represents an iterative process. Commonly, a single prototype will be used throughout the process, with its form being modified as the design evolves. If the form of the prototype is not captured as each iteration occurs understanding how specific design changes impact upon the satisfaction of requirements is challenging, particularly retrospectively.In this paper two different systems for digitising physical artefacts, structured light scanning (SLS) and photogrammetry (PG), are investigated as means for capturing iterations of physical prototypes. First, a series of test artefacts are presented and procedures for operating each system are developed. Next, artefacts are digitised using both SLS and PG and resulting models are compared against a master model of each artefact. Results indicate that both systems are able to reconstruct the majority of each artefact's geometry within 0.1mm of the master, however, overall SLS demonstrated superior performance, both in terms of completion time and model quality. Additionally, the quality of PG models was far more influenced by the effort and expertise of the user compared to SLS.



Sign in / Sign up

Export Citation Format

Share Document