Multiple Myeloma Prediction from Bone-Marrow Blood Cell images using Machine Learning

Author(s):  
Sai Pavan Kamma ◽  
Guru Sai Sharma Chilukuri ◽  
Guru Sree Ram Tholeti ◽  
Rudra Kalyan Nayak ◽  
Tapaswi Maradani
Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 4922-4922
Author(s):  
Christian Pohlkamp ◽  
Niroshan Nadarajah ◽  
Inseok Heo ◽  
Dimitros Tziotis ◽  
Sven Maschek ◽  
...  

Abstract Background: Cytomorphology is an essential method to assess disease phenotypes. Recently, promising results of automation, digitalization and machine learning (ML) for this gold standard have been demonstrated. We reported on successful integration of such workflows into our lab routine, including automated scanning of peripheral blood smears and ML-based classification of blood cell images (ASH 2020). Following this pilot project, we are focusing on an equivalent approach for bone marrow. Aim: To establish a multistep-approach including scan of bone marrow smears and detection/classification of all kinds of bone marrow cell types in healthy individuals and leukemia patients. Methods: The method includes a pre-scan at 10x magnification for detecting suitable "areas of interest" (AOI) for cytomorphological analysis, a high resolution capture of a predefinable number of AOI at 40x magnification (always using oil) and an automated object detection and classification. For all scanning tasks, a Metafer Scanning System (Zeiss Axio Imager.Z2 microscope, automatic slide feeder SFx80 and automated oil disperser) from MetaSystems (Altlussheim, GER) was used. To generate training data for AOI detection, 37 bone marrow smears were scanned at 10x magnification. 6 different quality classes of regions (based on number and distribution of cells) were annotated by hem experts using polygons. In total, 185,000 grid images were extracted from the annotated regions and used for training a deep neural network (DNN) to distinguish the 6 quality classes and to generate a position list for a high resolution scan (40x magnification). In addition, we scanned the labeled AOI of 68 smears at 40x magnification, acquiring colour images (2048x1496 pixels) of bone marrow cell layers. Each single cell was labeled by human investigators using rectangular bounding boxes (in total: 47,118 cells in 511 images). We set up a supervised ML model, using the labeled 40x images as an input. We fine-tuned the COCO dataset pre-trained YOLOv5 model with our dataset and evaluated using 5-fold cross valuation. To reduce overfitting, image augmentation algorithms were applied. Results: Our first DNN was able to detect (10x magnification) and capture (40x magnification) AOI in bone marrow smears, sorted by quality and in acceptable time spans. Average time for the 10x pre-scan was 6 min. From the resulting position list, the 50 positions with highest quality values were acquired at an average of 1:30 min. Our second, independent DNN was able to detect nucleated cells at 94% sensitivity and 75% precision in unlabeled bone marrow images (40x magnification). In this model, we overweighted recall over precision (5:1) to avoid missing any objects of interest, assuming that false positive labels could be corrected by human investigators when reviewing digital images. For the classification of single cells, a third independent DNN will be necessary. Actually, different approaches are being tested, including our existing blood cell classifier and a former collaborative bone marrow classification model based on a training set of 100,000 annotated bone marrow cells. Depending on these results, new training data for generation of a completely new model could be assessed. The two existing models enable a fully automated digital workflow including scan of bone marrow smears and delivery of single cell image galleries for human classification already now. Conclusion: We here present solutions for multiple-DNN-based tools for bone marrow cytomorphology. They allow working digitally and remotely in routine diagnostics. Final solutions will offer single cell classifications and galleries for human review and include real time training of respective classifier models with dynamic datasets. Figure 1 Figure 1. Disclosures Haferlach: MLL Munich Leukemia Laboratory: Other: Part ownership. Kern: MLL Munich Leukemia Laboratory: Other: Part ownership. Haferlach: MLL Munich Leukemia Laboratory: Other: Part ownership.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Sumit Kumar Das ◽  
Kazi Soumik Islam ◽  
Tanzila Ahsan Neha ◽  
Mohammad Monirujjaman Khan ◽  
Sami Bourouis

Inside the bone marrow, plasma cells are created, and they are a type of white blood cells. They are made from B lymphocytes. Antigens are produced by plasma cells to combat bacteria and viruses and prevent inflammation and illness. Multiple myeloma is a plasma cell cancer that starts in the bone marrow and causes the formation of abnormal plasma cells. Multiple myeloma is firmly identified by examining bone marrow samples under a microscope for myeloma cells. To diagnose myeloma cells, pathologists have to be very selective. Furthermore, because the ultimate decision is based on human sight and opinion, there is a possibility of error in the result. The nobility of this research is that it provides a computer-assisted technique for recognizing and detecting myeloma cells in bone marrow smears. For recognizing purposes, we have used Mask-Recurrent Convolutional Neural Network, and for detection purposes, Efficient Net B3 has been used. There are already many studies on white blood cell cancer, but very few with both segmentation and classification. We have designed two models. One is for recognizing myeloma cells, and the other is for differentiating them from nonmyeloma cells. Also, a new data set has been made from the multiple myeloma data sets, which has been used in our classification model. This research focuses on hybrid segmentation models and increases the accuracy level of the classification model. Both of our models are trained pretty well, where the Mask-RCNN model gives a mean average precision (mAP) of 93% and the Efficient Net B3 model gives 94.68% accuracy. The result of this research indicates that the Mask-RCNN model can recognize multiple myeloma and Efficient Net B3 can distinguish between myeloma and nonmyeloma cells and beats most of the state of the art in myeloma recognition and detection.


1979 ◽  
Vol 18 (06) ◽  
pp. 290-292 ◽  
Author(s):  
R. Lahtinen ◽  
T. Lahtinen

SummaryA l33Xe washout method has been used for measuring changes of blood flow in the proximal femur of a patient with the blastic crisis of chronic granulocytic leukaemia. In the hyperplastic phase the blood flow was highly increased and over three times greater than in the hypoplastic phase of the disease and over thirteen times greater than the value in normal bone. The bone circulation and especially the first component of the two-exponential bone washout curves appeared to reflect cell proliferation and neoplastic activity of the whole bone marrow. The method may provide clinically important information in the follow-up of selected haematological diseases.


2020 ◽  
pp. 68-72
Author(s):  
V.G. Nikitaev ◽  
A.N. Pronichev ◽  
V.V. Dmitrieva ◽  
E.V. Polyakov ◽  
A.D. Samsonova ◽  
...  

The issues of using of information and measurement systems based on processing of digital images of microscopic preparations for solving large-scale tasks of automating the diagnosis of acute leukemia are considered. The high density of leukocyte cells in the preparation (hypercellularity) is a feature of microscopic images of bone marrow preparations. It causes the proximity of cells to eachother and their contact with the formation of conglomerates. Measuring of the characteristics of bone marrow cells in such conditions leads to unacceptable errors (more than 50%). The work is devoted to segmentation of contiguous cells in images of bone marrow preparations. A method of cell separation during white blood cell segmentation on images of bone marrow preparations under conditions of hypercellularity of the preparation has been developed. The peculiarity of the proposed method is the use of an approach to segmentation of cell images based on the watershed method with markers. Key stages of the method: the formation of initial markers and builds the lines of watershed, a threshold binarization, shading inside the outline. The parameters of the separation of contiguous cells are determined. The experiment confirmed the effectiveness of the proposed method. The relative segmentation error was 5 %. The use of the proposed method in information and measurement systems of computer microscopy for automated analysis of bone marrow preparations will help to improve the accuracy of diagnosis of acute leukemia.


Sign in / Sign up

Export Citation Format

Share Document