A Supervised Machine Learning Based Approach for Automatically Extracting High-Level Threat Intelligence from Unstructured Sources

Author(s):  
Yumna Ghazi ◽  
Zahid Anwar ◽  
Rafia Mumtaz ◽  
Shahzad Saleem ◽  
Ali Tahir
AI Magazine ◽  
2015 ◽  
Vol 36 (1) ◽  
pp. 75-86 ◽  
Author(s):  
Jennifer Sleeman ◽  
Tim Finin ◽  
Anupam Joshi

We describe an approach for identifying fine-grained entity types in heterogeneous data graphs that is effective for unstructured data or when the underlying ontologies or semantic schemas are unknown. Identifying fine-grained entity types, rather than a few high-level types, supports coreference resolution in heterogeneous graphs by reducing the number of possible coreference relations that must be considered. Big data problems that involve integrating data from multiple sources can benefit from our approach when the datas ontologies are unknown, inaccessible or semantically trivial. For such cases, we use supervised machine learning to map entity attributes and relations to a known set of attributes and relations from appropriate background knowledge bases to predict instance entity types. We evaluated this approach in experiments on data from DBpedia, Freebase, and Arnetminer using DBpedia as the background knowledge base.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ritaban Dutta ◽  
Cherry Chen ◽  
David Renshaw ◽  
Daniel Liang

AbstractExtraordinary shape recovery capabilities of shape memory alloys (SMAs) have made them a crucial building block for the development of next-generation soft robotic systems and associated cognitive robotic controllers. In this study we desired to determine whether combining video data analysis techniques with machine learning techniques could develop a computer vision based predictive system to accurately predict force generated by the movement of a SMA body that is capable of a multi-point actuation performance. We identified that rapid video capture of the bending movements of a SMA body while undergoing external electrical excitements and adapting that characterisation using computer vision approach into a machine learning model, can accurately predict the amount of actuation force generated by the body. This is a fundamental area for achieving a superior control of the actuation of SMA bodies. We demonstrate that a supervised machine learning framework trained with Restricted Boltzmann Machine (RBM) inspired features extracted from 45,000 digital thermal infrared video frames captured during excitement of various SMA shapes, is capable to estimate and predict force and stress with 93% global accuracy with very low false negatives and high level of predictive generalisation.


2021 ◽  
Author(s):  
Ritaban Dutta ◽  
Cherry Chen ◽  
David Renshaw ◽  
Daniel Liang

Abstract Extraordinary shape recovery capabilities of shape memory alloys (SMAs) have made them a crucial building block for the development of next-generation soft robotic systems and associated cognitive robotic controllers. In this study we desired to determine whether combining video data analysis techniques with machine learning techniques could develop a computer vision based predictive system to accurately predict force generated by the movement of a SMA body that is capable of a multi-point actuation performance. We identified that rapid video capture of the bending movements of a SMA body while undergoing external electrical excitements and adapting that characterisation using computer vision approach into a machine learning model, can accurately predict the amount of actuation force generated by the body. This is a fundamental area for achieving a superior control of the actuation of SMA bodies. We demonstrate that a supervised machine learning framework trained with Restricted Boltzmann Machine (RBM) inspired features extracted from 45000 digital thermal infrared video frames captured during excitement of various SMA shapes, is capable to estimate and predict force and stress with 93% global accuracy with very low false negatives and high level of predictive generalisation.


2020 ◽  
Vol 14 (2) ◽  
pp. 140-159
Author(s):  
Anthony-Paul Cooper ◽  
Emmanuel Awuni Kolog ◽  
Erkki Sutinen

This article builds on previous research around the exploration of the content of church-related tweets. It does so by exploring whether the qualitative thematic coding of such tweets can, in part, be automated by the use of machine learning. It compares three supervised machine learning algorithms to understand how useful each algorithm is at a classification task, based on a dataset of human-coded church-related tweets. The study finds that one such algorithm, Naïve-Bayes, performs better than the other algorithms considered, returning Precision, Recall and F-measure values which each exceed an acceptable threshold of 70%. This has far-reaching consequences at a time where the high volume of social media data, in this case, Twitter data, means that the resource-intensity of manual coding approaches can act as a barrier to understanding how the online community interacts with, and talks about, church. The findings presented in this article offer a way forward for scholars of digital theology to better understand the content of online church discourse.


2017 ◽  
Author(s):  
Sabrina Jaeger ◽  
Simone Fulle ◽  
Samo Turk

Inspired by natural language processing techniques we here introduce Mol2vec which is an unsupervised machine learning approach to learn vector representations of molecular substructures. Similarly, to the Word2vec models where vectors of closely related words are in close proximity in the vector space, Mol2vec learns vector representations of molecular substructures that are pointing in similar directions for chemically related substructures. Compounds can finally be encoded as vectors by summing up vectors of the individual substructures and, for instance, feed into supervised machine learning approaches to predict compound properties. The underlying substructure vector embeddings are obtained by training an unsupervised machine learning approach on a so-called corpus of compounds that consists of all available chemical matter. The resulting Mol2vec model is pre-trained once, yields dense vector representations and overcomes drawbacks of common compound feature representations such as sparseness and bit collisions. The prediction capabilities are demonstrated on several compound property and bioactivity data sets and compared with results obtained for Morgan fingerprints as reference compound representation. Mol2vec can be easily combined with ProtVec, which employs the same Word2vec concept on protein sequences, resulting in a proteochemometric approach that is alignment independent and can be thus also easily used for proteins with low sequence similarities.


2019 ◽  
Author(s):  
Siddhartha Laghuvarapu ◽  
Yashaswi Pathak ◽  
U. Deva Priyakumar

Recent advances in artificial intelligence along with development of large datasets of energies calculated using quantum mechanical (QM)/density functional theory (DFT) methods have enabled prediction of accurate molecular energies at reasonably low computational cost. However, machine learning models that have been reported so far requires the atomic positions obtained from geometry optimizations using high level QM/DFT methods as input in order to predict the energies, and do not allow for geometry optimization. In this paper, a transferable and molecule-size independent machine learning model (BAND NN) based on a chemically intuitive representation inspired by molecular mechanics force fields is presented. The model predicts the atomization energies of equilibrium and non-equilibrium structures as sum of energy contributions from bonds (B), angles (A), nonbonds (N) and dihedrals (D) at remarkable accuracy. The robustness of the proposed model is further validated by calculations that span over the conformational, configurational and reaction space. The transferability of this model on systems larger than the ones in the dataset is demonstrated by performing calculations on select large molecules. Importantly, employing the BAND NN model, it is possible to perform geometry optimizations starting from non-equilibrium structures along with predicting their energies.


Sign in / Sign up

Export Citation Format

Share Document