Safety assessment of existing rigid-frame arch bridges using fuzzy theory based analytic multivariate and hierarchy approach

Author(s):  
Kai-zhong Xie ◽  
Shi-sheng Yang ◽  
Li-lin Wei
2011 ◽  
Vol 219-220 ◽  
pp. 458-462
Author(s):  
Ze Ying Yang ◽  
Xi Bin Zhang ◽  
Jian Bo Qu

According to Dawenkou bridge, a seriously deteriorated rigid-frame arch bridge, typical deteriorations of rigid-frame arch bridges were summarized. Based on 3-dimensional finite element model of a rigid-frame arch bridge, the relationship between dynamic properties and deteriorations of the structure, especially the influence of lateral tie system on the dynamic properties of the structure was analyzed. The results show that, damages of lateral tie system in operation induced premature appearance of lateral vibration directly; however, the large curvature torsion of deck obviously should take the mainly responsibility of damages of lateral tie system. According to the above analysis, the corresponding reinforcement scheme and specific measures were proposed.


2014 ◽  
Vol 501-504 ◽  
pp. 1301-1304 ◽  
Author(s):  
Li Li

There are many old damaged double-curved arch bridges with design drawing lost serviced for more than 40 years are still used in West China. Based on the repair and improving the carrying capacity work of a damaged badly double-curved arch bridge whose design drawing is lost with main span of 41.0m constructed in 1962 in Sichuan province of China, health inspecting and safety assessment for this type bridge using non-destructive methods is studied. Then the strengthening design of filling concrete and enlarging the section method is proposed. High performance self-dense slight-expansion concrete and embedded bar techniques are applied in strengthening construction. After the strengthening work completed, the arch bridge is still in very good work condition experienced two devastating disasters of the 2008 Sichuan Wenchuan and the 2013 Sichuan Lushan earthquake, with the distance of bridge site to epicenter less than 100km, which proved the safety assessment and the strengthening design proposal are effective and feasible.


2015 ◽  
Vol 19 (2) ◽  
pp. 405-416 ◽  
Author(s):  
Hongye Gou ◽  
Qianhui Pu ◽  
Yang Zhou ◽  
Yu Hong

2012 ◽  
Vol 178-181 ◽  
pp. 2405-2411
Author(s):  
Li He ◽  
Yong Jiu Qian

A variety of conventional weapons equipped with explosive are used to destroy the significant long-span arch bridge. Because of the special function of the weapons and the complexity of the arch bridge, the damage results with the features of uncertainty and fuzzy are assessed with fuzzy theory. Combined with the standards for technical condition evaluation of highway bridges and wartime specific requirements, the fuzzy mathematical model based on the fuzzy mathematics theory and method is established to judgment comprehensively the arch technical condition. The hirarchy fuzzy comprehensive evaluation method is applied to determine the technical state grade of the damaged arch bridge. The method of damage evaluation provides the effective reference for the emergency repairmen of the arch bridges.


2011 ◽  
Vol 71-78 ◽  
pp. 3800-3805
Author(s):  
Da Lin Hu ◽  
Kai Jiang ◽  
Qi Xin Sun ◽  
Lin Han

In the past 50 years, many long-span continuous stone arch bridges have been built in China. Analysis of mechanical performances and load capacities of long-span continuous stone arch bridges has important significances for the safety assessment of the similar bridges. 3D elastoplastic finite element method is employed to analyze ultimate bearing capacity of a three-span arch bridge with sandstone masonry in this paper. The characteristics of structural geometric and material nonlinearities and cracking and crushing of the masonry are taken into account. Compared with single-span arch bridge, both the coaction of spandrel structure and main arch and the influence of loading arrangements on ultimate bearing capacity is analyzed. The failure characteristics of the structure under the ultimate load are also introduced. The analysis results and conclusions can be referenced for the safety assessment of similar bridges.


2020 ◽  
Vol 15 (6) ◽  
pp. 885-893
Author(s):  
Yanchao Ding ◽  
Zhongfu Xiang ◽  
Yayong Li ◽  
Xuesong Zhang ◽  
Yin Zhou

Long-span deck-type beam-arch composite rigid frame (BACRF) bridge fully integrates the merits of arch bridges and beam bridges, and overcomes the cracking and deflection problems of continuous rigid frame bridges. As a perfect combination of beam bridges and arch bridges, the long-span deck-type BACRF bridge boasts a light structure, a strong bearing capacity, and a powerful spanning capability. From the perspective of mechanical system evolution, this paper theoretically analyzes the structural mechanics of the beam-arch composite system, establishes a half-bridge model for BACRF bridge, and derives the expressions of the internal force and displacement of the beam-arch composite system. Next, finite-element analysis was conducted to analyze how the variation of a single parameter, e.g., rise-span ratio, open web ratio, and side-to-middle span ratio, affects midspan displacement, arch-beam junction displacement, main beam bending moment, and main arch axial force. Finally, the calculation formula for deflection-span ratio of BACRF bridge was proposed based on the maximum hyperplane method. The research results provide a reference for the structural design of similar bridges.


Sign in / Sign up

Export Citation Format

Share Document