scholarly journals An approach to human iris recognition using quantitative analysis of image features and machine learning

Author(s):  
Abolfazl Zargari Khuzani ◽  
Najmeh Mashhadi ◽  
Morteza Heidari ◽  
Donya Khaledyan

Biometric identification is highly reliable for human identification. Biometric is a field of science used for analyzing the physiological or behavioural characteristics of human. Iris features are unique, stable and can be visible from longer distances. It uses mathematical pattern-recognition techniques on video images of one or both iris of an individual's. Compared to other biometric traits, iris is more challenging and highly secured tool to identify the individual. In this paper iris recognition based on the combination of Discrete Wavelet Transform (DWT), Inverse Discrete Wavelet Transform (IDWT), Independent Component Analysis (ICA) and Binariezed Statistical Image Features (BSIF) are adopted to generate the hybrid iris features. The first level and second level DWT are employed in order to extract the more unique features of the iris images. The concept of bicubic interpolation is applied on high frequency coefficients generated by first level decomposition of DWT to produce new set of sub-bands. The approximation band generated by second level decomposition of DWT and new set of sub-bands produced by second level decomposition of DWT are applied on IDWT to reconstruct the coefficients. The ICA 5x5 filters and BSIF are adopted for selecting the appropriate images to extract the final features. Finally based on the matching score between the database image and test image the genuine and imposters are identified. Using CASIA database, training and testing of the features is performed and performance is evaluated considering different combinations of Person inside Database (PID) and Person outside Database (POD).


Land ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 648
Author(s):  
Guie Li ◽  
Zhongliang Cai ◽  
Yun Qian ◽  
Fei Chen

Enriching Asian perspectives on the rapid identification of urban poverty and its implications for housing inequality, this paper contributes empirical evidence about the utility of image features derived from high-resolution satellite imagery and machine learning approaches for identifying urban poverty in China at the community level. For the case of the Jiangxia District and Huangpi District of Wuhan, image features, including perimeter, line segment detector (LSD), Hough transform, gray-level cooccurrence matrix (GLCM), histogram of oriented gradients (HoG), and local binary patterns (LBP), are calculated, and four machine learning approaches and 25 variables are applied to identify urban poverty and relatively important variables. The results show that image features and machine learning approaches can be used to identify urban poverty with the best model performance with a coefficient of determination, R2, of 0.5341 and 0.5324 for Jiangxia and Huangpi, respectively, although some differences exist among the approaches and study areas. The importance of each variable differs for each approach and study area; however, the relatively important variables are similar. In particular, four variables achieved relatively satisfactory prediction results for all models and presented obvious differences in varying communities with different poverty levels. Housing inequality within low-income neighborhoods, which is a response to gaps in wealth, income, and housing affordability among social groups, is an important manifestation of urban poverty. Policy makers can implement these findings to rapidly identify urban poverty, and the findings have potential applications for addressing housing inequality and proving the rationality of urban planning for building a sustainable society.


2019 ◽  
Vol 45 (10) ◽  
pp. 3193-3201 ◽  
Author(s):  
Yajuan Li ◽  
Xialing Huang ◽  
Yuwei Xia ◽  
Liling Long

Abstract Purpose To explore the value of CT-enhanced quantitative features combined with machine learning for differential diagnosis of renal chromophobe cell carcinoma (chRCC) and renal oncocytoma (RO). Methods Sixty-one cases of renal tumors (chRCC = 44; RO = 17) that were pathologically confirmed at our hospital between 2008 and 2018 were retrospectively analyzed. All patients had undergone preoperative enhanced CT scans including the corticomedullary (CMP), nephrographic (NP), and excretory phases (EP) of contrast enhancement. Volumes of interest (VOIs), including lesions on the images, were manually delineated using the RadCloud platform. A LASSO regression algorithm was used to screen the image features extracted from all VOIs. Five machine learning classifications were trained to distinguish chRCC from RO by using a fivefold cross-validation strategy. The performance of the classifier was mainly evaluated by areas under the receiver operating characteristic (ROC) curve and accuracy. Results In total, 1029 features were extracted from CMP, NP, and EP. The LASSO regression algorithm was used to screen out the four, four, and six best features, respectively, and eight features were selected when CMP and NP were combined. All five classifiers had good diagnostic performance, with area under the curve (AUC) values greater than 0.850, and support vector machine (SVM) classifier showed a diagnostic accuracy of 0.945 (AUC 0.964 ± 0.054; sensitivity 0.999; specificity 0.800), showing the best performance. Conclusions Accurate preoperative differential diagnosis of chRCC and RO can be facilitated by a combination of CT-enhanced quantitative features and machine learning.


2021 ◽  
Author(s):  
Tao Lin ◽  
Mokhles Mezghani ◽  
Chicheng Xu ◽  
Weichang Li

Abstract Reservoir characterization requires accurate prediction of multiple petrophysical properties such as bulk density (or acoustic impedance), porosity, and permeability. However, it remains a big challenge in heterogeneous reservoirs due to significant diagenetic impacts including dissolution, dolomitization, cementation, and fracturing. Most well logs lack the resolution to obtain rock properties in detail in a heterogenous formation. Therefore, it is pertinent to integrate core images into the prediction workflow. This study presents a new approach to solve the problem of obtaining the high-resolution multiple petrophysical properties, by combining machine learning (ML) algorithms and computer vision (CV) techniques. The methodology can be used to automate the process of core data analysis with a minimum number of plugs, thus reducing human effort and cost and improving accuracy. The workflow consists of conditioning and extracting features from core images, correlating well logs and core analysis with those features to build ML models, and applying the models on new cores for petrophysical properties predictions. The core images are preprocessed and analyzed using color models and texture recognition, to extract image characteristics and core textures. The image features are then aggregated into a profile in depth, resampled and aligned with well logs and core analysis. The ML regression models, including classification and regression trees (CART) and deep neural network (DNN), are trained and validated from the filtered training samples of relevant features and target petrophysical properties. The models are then tested on a blind test dataset to evaluate the prediction performance, to predict target petrophysical properties of grain density, porosity and permeability. The profile of histograms of each target property are computed to analyze the data distribution. The feature vectors are extracted from CV analysis of core images and gamma ray logs. The importance of each feature is generated by CART model to individual target, which may be used to reduce model complexity of future model building. The model performances are evaluated and compared on each target. We achieved reasonably good correlation and accuracy on the models, for example, porosity R2=49.7% and RMSE=2.4 p.u., and logarithmic permeability R2=57.8% and RMSE=0.53. The field case demonstrates that inclusion of core image attributes can improve petrophysical regression in heterogenous reservoirs. It can be extended to a multi-well setting to generate vertical distribution of petrophysical properties which can be integrated into reservoir modeling and characterization. Machine leaning algorithms can help automate the workflow and be flexible to be adjusted to take various inputs for prediction.


2021 ◽  
Author(s):  
Wael Alnahari

Abstract In this paper, I proposed an iris recognition system by using deep learning via neural networks (CNN). Although CNN is used for machine learning, the recognition is achieved by building a non-trained CNN network with multiple layers. The main objective of the code the test pictures’ category (aka person name) with a high accuracy rate after having extracted enough features from training pictures of the same category which are obtained from a that I added to the code. I used IITD iris which included 10 iris pictures for 223 people.


Sign in / Sign up

Export Citation Format

Share Document