scholarly journals Value of radiomics in differential diagnosis of chromophobe renal cell carcinoma and renal oncocytoma

2019 ◽  
Vol 45 (10) ◽  
pp. 3193-3201 ◽  
Author(s):  
Yajuan Li ◽  
Xialing Huang ◽  
Yuwei Xia ◽  
Liling Long

Abstract Purpose To explore the value of CT-enhanced quantitative features combined with machine learning for differential diagnosis of renal chromophobe cell carcinoma (chRCC) and renal oncocytoma (RO). Methods Sixty-one cases of renal tumors (chRCC = 44; RO = 17) that were pathologically confirmed at our hospital between 2008 and 2018 were retrospectively analyzed. All patients had undergone preoperative enhanced CT scans including the corticomedullary (CMP), nephrographic (NP), and excretory phases (EP) of contrast enhancement. Volumes of interest (VOIs), including lesions on the images, were manually delineated using the RadCloud platform. A LASSO regression algorithm was used to screen the image features extracted from all VOIs. Five machine learning classifications were trained to distinguish chRCC from RO by using a fivefold cross-validation strategy. The performance of the classifier was mainly evaluated by areas under the receiver operating characteristic (ROC) curve and accuracy. Results In total, 1029 features were extracted from CMP, NP, and EP. The LASSO regression algorithm was used to screen out the four, four, and six best features, respectively, and eight features were selected when CMP and NP were combined. All five classifiers had good diagnostic performance, with area under the curve (AUC) values greater than 0.850, and support vector machine (SVM) classifier showed a diagnostic accuracy of 0.945 (AUC 0.964 ± 0.054; sensitivity 0.999; specificity 0.800), showing the best performance. Conclusions Accurate preoperative differential diagnosis of chRCC and RO can be facilitated by a combination of CT-enhanced quantitative features and machine learning.

2020 ◽  
Author(s):  
Nalika Ulapane ◽  
Karthick Thiyagarajan ◽  
sarath kodagoda

<div>Classification has become a vital task in modern machine learning and Artificial Intelligence applications, including smart sensing. Numerous machine learning techniques are available to perform classification. Similarly, numerous practices, such as feature selection (i.e., selection of a subset of descriptor variables that optimally describe the output), are available to improve classifier performance. In this paper, we consider the case of a given supervised learning classification task that has to be performed making use of continuous-valued features. It is assumed that an optimal subset of features has already been selected. Therefore, no further feature reduction, or feature addition, is to be carried out. Then, we attempt to improve the classification performance by passing the given feature set through a transformation that produces a new feature set which we have named the “Binary Spectrum”. Via a case study example done on some Pulsed Eddy Current sensor data captured from an infrastructure monitoring task, we demonstrate how the classification accuracy of a Support Vector Machine (SVM) classifier increases through the use of this Binary Spectrum feature, indicating the feature transformation’s potential for broader usage.</div><div><br></div>


2021 ◽  
Vol 10 (5) ◽  
pp. 992
Author(s):  
Martina Barchitta ◽  
Andrea Maugeri ◽  
Giuliana Favara ◽  
Paolo Marco Riela ◽  
Giovanni Gallo ◽  
...  

Patients in intensive care units (ICUs) were at higher risk of worsen prognosis and mortality. Here, we aimed to evaluate the ability of the Simplified Acute Physiology Score (SAPS II) to predict the risk of 7-day mortality, and to test a machine learning algorithm which combines the SAPS II with additional patients’ characteristics at ICU admission. We used data from the “Italian Nosocomial Infections Surveillance in Intensive Care Units” network. Support Vector Machines (SVM) algorithm was used to classify 3782 patients according to sex, patient’s origin, type of ICU admission, non-surgical treatment for acute coronary disease, surgical intervention, SAPS II, presence of invasive devices, trauma, impaired immunity, antibiotic therapy and onset of HAI. The accuracy of SAPS II for predicting patients who died from those who did not was 69.3%, with an Area Under the Curve (AUC) of 0.678. Using the SVM algorithm, instead, we achieved an accuracy of 83.5% and AUC of 0.896. Notably, SAPS II was the variable that weighted more on the model and its removal resulted in an AUC of 0.653 and an accuracy of 68.4%. Overall, these findings suggest the present SVM model as a useful tool to early predict patients at higher risk of death at ICU admission.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Jianxiong Fu ◽  
Jing Ye ◽  
Wenrong Zhu ◽  
Jingtao Wu ◽  
Wenxin Chen ◽  
...  

Abstract Background Benign and malignant renal tumors share similar some imaging findings. Methods Sixty-six patients with clear cell renal cell carcinoma (CCRCC), 13 patients with renal angiomyolipoma with minimal fat (RAMF) and 7 patients with renal oncocytoma (RO) were examined. For diffusion kurtosis imaging (DKI), respiratory triggered echo-planar imaging sequences were acquired in axial plane (3 b-values: 0, 500, 1000s/mm2). Mean Diffusivity (MD), fractional Anisotropy (FA), mean kurtosis (MK), kurtosis anisotropy (KA) and radial kurtosis (RK) were performed. Results For MD, a significant higher value was shown in CCRCC (3.08 ± 0.23) than the rest renal tumors (2.93 ± 0.30 for RO, 1.52 ± 0.24 for AML, P < 0.05). The MD values were higher for RO than for AML (2.93 ± 0.30 vs.1.52 ± 0.24, P < 0.05), while comparable MD values were found between CCRCC and RO (3.08 ± 0.23 vs. 2.93 ± 0.30, P > 0.05). For MK, KA and RK, a significant higher value was shown in AML (1.32 ± 0.16, 1.42 ± 0.23, 1.41 ± 0.29) than CCRCC (0.43 ± 0.08, 0.57 ± 0.16, 0.37 ± 0.11) and RO (0.81 ± 0.08, 0.86 ± 0.16, 0.69 ± 0.08) (P < 0.05). The MK, KA and RK values were higher for RO than for CCRCC (0.81 ± 0.08 vs. 0.43 ± 0.08, 0.86 ± 0.16 vs. 0.57 ± 0.16, 0.69 ± 0.08 vs. 0.37 ± 0.11, P < 0.05). Using MD values of 2.86 as the threshold value for differentiating CCRCC from RO and AML, the best result obtained had a sensitivity of 76.1%, specificity of 72.6%. Using MK, KA and RK values of 1.19,1.13 and 1.11 as the threshold value for differentiating AML from CCRCC and RO, the best result obtained had a sensitivity of 91.2, 86.7, 82.1%, and specificity of 86.7, 83.2, 72.8%. Conclusion DKI can be used as another noninvasive biomarker for benign and malignant renal tumors’ differential diagnosis.


2018 ◽  
Vol 28 (02) ◽  
pp. 1750036 ◽  
Author(s):  
Shuqiang Wang ◽  
Yong Hu ◽  
Yanyan Shen ◽  
Hanxiong Li

In this study, we propose an automated framework that combines diffusion tensor imaging (DTI) metrics with machine learning algorithms to accurately classify control groups and groups with cervical spondylotic myelopathy (CSM) in the spinal cord. The comparison between selected voxel-based classification and mean value-based classification were performed. A support vector machine (SVM) classifier using a selected voxel-based dataset produced an accuracy of 95.73%, sensitivity of 93.41% and specificity of 98.64%. The efficacy of each index of diffusion for classification was also evaluated. Using the proposed approach, myelopathic areas in CSM are detected to provide an accurate reference to assist spine surgeons in surgical planning in complicated cases.


2020 ◽  
Vol 10 (18) ◽  
pp. 6417 ◽  
Author(s):  
Emanuele Lattanzi ◽  
Giacomo Castellucci ◽  
Valerio Freschi

Most road accidents occur due to human fatigue, inattention, or drowsiness. Recently, machine learning technology has been successfully applied to identifying driving styles and recognizing unsafe behaviors starting from in-vehicle sensors signals such as vehicle and engine speed, throttle position, and engine load. In this work, we investigated the fusion of different external sensors, such as a gyroscope and a magnetometer, with in-vehicle sensors, to increase machine learning identification of unsafe driver behavior. Starting from those signals, we computed a set of features capable to accurately describe the behavior of the driver. A support vector machine and an artificial neural network were then trained and tested using several features calculated over more than 200 km of travel. The ground truth used to evaluate classification performances was obtained by means of an objective methodology based on the relationship between speed, and lateral and longitudinal acceleration of the vehicle. The classification results showed an average accuracy of about 88% using the SVM classifier and of about 90% using the neural network demonstrating the potential capability of the proposed methodology to identify unsafe driver behaviors.


2021 ◽  
Vol 9 ◽  
Author(s):  
Ashwini K ◽  
P. M. Durai Raj Vincent ◽  
Kathiravan Srinivasan ◽  
Chuan-Yu Chang

Neonatal infants communicate with us through cries. The infant cry signals have distinct patterns depending on the purpose of the cries. Preprocessing, feature extraction, and feature selection need expert attention and take much effort in audio signals in recent days. In deep learning techniques, it automatically extracts and selects the most important features. For this, it requires an enormous amount of data for effective classification. This work mainly discriminates the neonatal cries into pain, hunger, and sleepiness. The neonatal cry auditory signals are transformed into a spectrogram image by utilizing the short-time Fourier transform (STFT) technique. The deep convolutional neural network (DCNN) technique takes the spectrogram images for input. The features are obtained from the convolutional neural network and are passed to the support vector machine (SVM) classifier. Machine learning technique classifies neonatal cries. This work combines the advantages of machine learning and deep learning techniques to get the best results even with a moderate number of data samples. The experimental result shows that CNN-based feature extraction and SVM classifier provides promising results. While comparing the SVM-based kernel techniques, namely radial basis function (RBF), linear and polynomial, it is found that SVM-RBF provides the highest accuracy of kernel-based infant cry classification system provides 88.89% accuracy.


2021 ◽  
Vol 15 ◽  
Author(s):  
Shu Zhao ◽  
Zhiwei Bao ◽  
Xinyi Zhao ◽  
Mengxiang Xu ◽  
Ming D. Li ◽  
...  

BackgroundMajor depressive disorder (MDD) is a global health challenge that impacts the quality of patients’ lives severely. The disorder can manifest in many forms with different combinations of symptoms, which makes its clinical diagnosis difficult. Robust biomarkers are greatly needed to improve diagnosis and to understand the etiology of the disease. The main purpose of this study was to create a predictive model for MDD diagnosis based on peripheral blood transcriptomes.Materials and MethodsWe collected nine RNA expression datasets for MDD patients and healthy samples from the Gene Expression Omnibus database. After a series of quality control and heterogeneity tests, 302 samples from six studies were deemed suitable for the study. R package “MetaOmics” was applied for systematic meta-analysis of genome-wide expression data. Receiver operating characteristic (ROC) curve analysis was used to evaluate the diagnostic effectiveness of individual genes. To obtain a better diagnostic model, we also adopted the support vector machine (SVM), random forest (RF), k-nearest neighbors (kNN), and naive Bayesian (NB) tools for modeling, with the RF method being used for feature selection.ResultsOur analysis revealed six differentially expressed genes (AKR1C3, ARG1, KLRB1, MAFG, TPST1, and WWC3) with a false discovery rate (FDR) &lt; 0.05 between MDD patients and control subjects. We then evaluated the diagnostic ability of these genes individually. With single gene prediction, we achieved a corresponding area under the curve (AUC) value of 0.63 ± 0.04, 0.67 ± 0.07, 0.70 ± 0.11, 0.64 ± 0.08, 0.68 ± 0.07, and 0.62 ± 0.09, respectively, for these genes. Next, we constructed the classifiers of SVM, RF, kNN, and NB with an AUC of 0.84 ± 0.09, 0.81 ± 0.10, 0.73 ± 0.11, and 0.83 ± 0.09, respectively, in validation datasets, suggesting that the SVM classifier might be superior for constructing an MDD diagnostic model. The final SVM classifier including 70 feature genes was capable of distinguishing MDD samples from healthy controls and yielded an AUC of 0.78 in an independent dataset.ConclusionThis study provides new insights into potential biomarkers through meta-analysis of GEO data. Constructing different machine learning models based on these biomarkers could be a valuable approach for diagnosing MDD in clinical practice.


2020 ◽  
Author(s):  
Vincent Bremer ◽  
Philip I Chow ◽  
Burkhardt Funk ◽  
Frances P Thorndike ◽  
Lee M Ritterband

BACKGROUND User dropout is a widespread concern in the delivery and evaluation of digital (ie, web and mobile apps) health interventions. Researchers have yet to fully realize the potential of the large amount of data generated by these technology-based programs. Of particular interest is the ability to predict who will drop out of an intervention. This may be possible through the analysis of user journey data—self-reported as well as system-generated data—produced by the path (or journey) an individual takes to navigate through a digital health intervention. OBJECTIVE The purpose of this study is to provide a step-by-step process for the analysis of user journey data and eventually to predict dropout in the context of digital health interventions. The process is applied to data from an internet-based intervention for insomnia as a way to illustrate its use. The completion of the program is contingent upon completing 7 sequential cores, which include an initial tutorial core. Dropout is defined as not completing the seventh core. METHODS Steps of user journey analysis, including data transformation, feature engineering, and statistical model analysis and evaluation, are presented. Dropouts were predicted based on data from 151 participants from a fully automated web-based program (Sleep Healthy Using the Internet) that delivers cognitive behavioral therapy for insomnia. Logistic regression with L1 and L2 regularization, support vector machines, and boosted decision trees were used and evaluated based on their predictive performance. Relevant features from the data are reported that predict user dropout. RESULTS Accuracy of predicting dropout (area under the curve [AUC] values) varied depending on the program core and the machine learning technique. After model evaluation, boosted decision trees achieved AUC values ranging between 0.6 and 0.9. Additional handcrafted features, including time to complete certain steps of the intervention, time to get out of bed, and days since the last interaction with the system, contributed to the prediction performance. CONCLUSIONS The results support the feasibility and potential of analyzing user journey data to predict dropout. Theory-driven handcrafted features increased the prediction performance. The ability to predict dropout at an individual level could be used to enhance decision making for researchers and clinicians as well as inform dynamic intervention regimens.


Diagnostics ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1784
Author(s):  
Shih-Chieh Chang ◽  
Chan-Lin Chu ◽  
Chih-Kuang Chen ◽  
Hsiang-Ning Chang ◽  
Alice M. K. Wong ◽  
...  

Prediction of post-stroke functional outcomes is crucial for allocating medical resources. In this study, a total of 577 patients were enrolled in the Post-Acute Care-Cerebrovascular Disease (PAC-CVD) program, and 77 predictors were collected at admission. The outcome was whether a patient could achieve a Barthel Index (BI) score of >60 upon discharge. Eight machine-learning (ML) methods were applied, and their results were integrated by stacking method. The area under the curve (AUC) of the eight ML models ranged from 0.83 to 0.887, with random forest, stacking, logistic regression, and support vector machine demonstrating superior performance. The feature importance analysis indicated that the initial Berg Balance Test (BBS-I), initial BI (BI-I), and initial Concise Chinese Aphasia Test (CCAT-I) were the top three predictors of BI scores at discharge. The partial dependence plot (PDP) and individual conditional expectation (ICE) plot indicated that the predictors’ ability to predict outcomes was the most pronounced within a specific value range (e.g., BBS-I < 40 and BI-I < 60). BI at discharge could be predicted by information collected at admission with the aid of various ML models, and the PDP and ICE plots indicated that the predictors could predict outcomes at a certain value range.


We presents a fully automated method for an automated brain-tumour boundary detection using region based segmentation technique along with SVM Classifier of Magnetic Resonance Imaging (MRI).The procedure is based on artificial intelligence technique and classification of each super-pixel in MRI. A number of novel image features extraction approaches including intensity-based, texture based, fractal analysis and curvatures are calculated from each super-pixel within the entire brain area in MRI to ensure a robust classification. Brain tumor is the malignant types of cancer and their classification in earlier stage is biggest issue. While curable with early classification is useful, only extremely trained specialists are capable of accurately recognizing the cancer from skin MRI data. As expertise is in limited contribute, an automated systems capable of classifying cancer could save human lives, and also help to reduce unnecessary MRI, and reduce extra costs. On the way to achieve this goal, we proposed a Brain Tumour Detection and Classification System (BTDCS) that combines recent developments in machine learning with Support Vector Machine (SVM) structure, creating hybrid algorithm of threshold based segmentation with Maximally Stable External Regions (MSER) that are capable of segmenting accurate super-pixel region from MRI, as well as analyzing the detected area and surrounding tissue for malignant. Using threshold based segmentation technique, the foreground and background component is separated into two regions. To improve the segmentation results, MSER is used with the novel concept of region detection and feature extraction mechanism. The proposed system is evaluated using the largest publicly accessible standard BRATS 2015 dataset of MRI, containing benign and malignant images. When the evaluation parameters of proposed work is compared with a few other state-of-art methods, the proposed means attains the best performance of 98.2% concerning classification accuracy using only the MSER approach and SVM as classifier. The ultimate aim of this research is to devise an automated experimental approach that can segment the tumor boundary in a fast and efficient manner.


Sign in / Sign up

Export Citation Format

Share Document