Functional Zoning of land use in Karst region based on neural network

Author(s):  
Ying-xue Rao ◽  
Bao-qing Hu

Author(s):  
Liqin Zhang ◽  
Jiangfeng Li ◽  
Chunfang Kong ◽  
Liping Qu ◽  
Jianghong Zhu ◽  
...  




Atmosphere ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 452
Author(s):  
Jan Bitta ◽  
Vladislav Svozilík ◽  
Aneta Svozilíková Krakovská

Land Use Regression (LUR) is one of the air quality assessment modelling techniques. Its advantages lie mainly in a much simpler mathematical apparatus, quicker and simpler calculations, and a possibility to incorporate more factors affecting pollutant concentration than standard dispersion models. The goal of the study was to perform the LUR model in the Polish-Czech-Slovakian Tritia region, to test two sets of pollution data input factors, i.e., factors based on emission data and pollution dispersion model results, to test regression via neural networks and compare it with standard linear regression. Both input datasets, emission data and pollution dispersion model results, provided a similar quality of results in the case when standard linear regression was used, the R2 of the models was 0.639 and 0.652. Neural network regression provided a significantly higher quality of the models, their R2 was 0.937 and 0.938 for the factors based on emission data and pollution dispersion model results respectively.



2018 ◽  
Vol 10 (10) ◽  
pp. 1572 ◽  
Author(s):  
Chunping Qiu ◽  
Michael Schmitt ◽  
Lichao Mou ◽  
Pedram Ghamisi ◽  
Xiao Zhu

Global Local Climate Zone (LCZ) maps, indicating urban structures and land use, are crucial for Urban Heat Island (UHI) studies and also as starting points to better understand the spatio-temporal dynamics of cities worldwide. However, reliable LCZ maps are not available on a global scale, hindering scientific progress across a range of disciplines that study the functionality of sustainable cities. As a first step towards large-scale LCZ mapping, this paper tries to provide guidance about data/feature choice. To this end, we evaluate the spectral reflectance and spectral indices of the globally available Sentinel-2 and Landsat-8 imagery, as well as the Global Urban Footprint (GUF) dataset, the OpenStreetMap layers buildings and land use and the Visible Infrared Imager Radiometer Suite (VIIRS)-based Nighttime Light (NTL) data, regarding their relevance for discriminating different Local Climate Zones (LCZs). Using a Residual convolutional neural Network (ResNet), a systematic analysis of feature importance is performed with a manually-labeled dataset containing nine cities located in Europe. Based on the investigation of the data and feature choice, we propose a framework to fully exploit the available datasets. The results show that GUF, OSM and NTL can contribute to the classification accuracy of some LCZs with relatively few samples, and it is suggested that Landsat-8 and Sentinel-2 spectral reflectances should be jointly used, for example in a majority voting manner, as proven by the improvement from the proposed framework, for large-scale LCZ mapping.



1996 ◽  
pp. 223-233
Author(s):  
Hirohito Kojima ◽  
Shigeyuki Obayashi ◽  
Hidetoshi Yamamori
Keyword(s):  




2013 ◽  
pp. 1297-1308
Author(s):  
Kang Shou Lu ◽  
John Morgan ◽  
Jeffery Allen

This paper presents an artificial neural network (ANN) for modeling multicategorical land use changes. Compared to conventional statistical models and cellular automata models, ANNs have both the architecture appropriate for addressing complex problems and the power for spatio-temporal prediction. The model consists of two layers with multiple input and output units. Bayesian regularization was used for network training in order to select an optimal model that avoids over-fitting problem. When trained and applied to predict changes in parcel use in a coastal county from 1990 to 2008, the ANN model performed well as measured by high prediction accuracy (82.0-98.5%) and high Kappa coefficient (81.4-97.5%) with only slight variation across five different land use categories. ANN also outperformed the benchmark multinomial logistic regression by average 17.5 percentage points in categorical accuracy and by 9.2 percentage points in overall accuracy. The authors used the ANN model to predict future parcel use change from 2007 to 2030.



Author(s):  
Kang Shou Lu ◽  
John Morgan ◽  
Jeffery Allen

This paper presents an artificial neural network (ANN) for modeling multicategorical land use changes. Compared to conventional statistical models and cellular automata models, ANNs have both the architecture appropriate for addressing complex problems and the power for spatio-temporal prediction. The model consists of two layers with multiple input and output units. Bayesian regularization was used for network training in order to select an optimal model that avoids over-fitting problem. When trained and applied to predict changes in parcel use in a coastal county from 1990 to 2008, the ANN model performed well as measured by high prediction accuracy (82.0-98.5%) and high Kappa coefficient (81.4-97.5%) with only slight variation across five different land use categories. ANN also outperformed the benchmark multinomial logistic regression by average 17.5 percentage points in categorical accuracy and by 9.2 percentage points in overall accuracy. The authors used the ANN model to predict future parcel use change from 2007 to 2030.



Sign in / Sign up

Export Citation Format

Share Document