Joint Beamforming and Power Allocation in Millimeter-Wave High-Speed Railway Systems

Author(s):  
Jianpeng Xu ◽  
Bo Ai ◽  
Liangyu Chen
2018 ◽  
Vol 15 (3) ◽  
pp. 172988141877394 ◽  
Author(s):  
Ye Han ◽  
Zhigang Liu ◽  
DJ Lee ◽  
Wenqiang Liu ◽  
Junwen Chen ◽  
...  

Maintenance of catenary system is a crucial task for the safe operation of high-speed railway systems. Catenary system malfunction could interrupt railway service and threaten public safety. This article presents a computer vision algorithm that is developed to automatically detect the defective rod-insulators in a catenary system to ensure reliable power transmission. Two key challenges in building such a robust inspection system are addressed in this work, the detection of the insulators in the catenary image and the detection of possible defects. A two-step insulator detection method is implemented to detect insulators with different inclination angles in the image. The sub-images containing cantilevers and rods are first extracted from the catenary image. Then, the insulators are detected in the sub-image using deformable part models. A local intensity period estimation algorithm is designed specifically for insulator defect detection. Experimental results show that the proposed method is able to automatically and reliably detect insulator defects including the breakage of the ceramic discs and the foreign objects clamped between two ceramic discs. The performance of this visual inspection method meets the strict requirements for catenary system maintenance.


2013 ◽  
Vol 13 (12) ◽  
pp. 4808-4816 ◽  
Author(s):  
Massimo Leonardo Filograno ◽  
Pedro Corredera ◽  
Miguel Rodriguez-Plaza ◽  
Alvaro Andres-Alguacil ◽  
Miguel Gonzalez-Herraez

2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Joongheon Kim ◽  
Jae-Jin Lee ◽  
Woojoo Lee

This paper discusses the stochastic and strategic control of 60 GHz millimeter-wave (mmWave) wireless transmission for distributed and mobile virtual reality (VR) applications. In VR scenarios, establishing wireless connection between VR data-center (called VR server (VRS)) and head-mounted VR device (called VRD) allows various mobile services. Consequently, utilizing wireless technologies is obviously beneficial in VR applications. In order to transmit massive VR data, the 60 GHz mmWave wireless technology is considered in this research. However, transmitting the maximum amount of data introduces maximum power consumption in transceivers. Therefore, this paper proposes a dynamic/adaptive algorithm that can control the power allocation in the 60 GHz mmWave transceivers. The proposed algorithm dynamically controls the power allocation in order to achieve time-average energy-efficiency for VR data transmission over 60 GHz mmWave channels while preserving queue stabilization. The simulation results show that the proposed algorithm presents desired performance.


Sign in / Sign up

Export Citation Format

Share Document