Impact of Distributed Generation on Voltage Profile of Radial Power Systems

Author(s):  
M. O. Al Ruwaili ◽  
M. Y. Vaziri ◽  
S. Vadhva ◽  
S. Vaziri
Author(s):  
N. Md. Saad ◽  
M. Z. Sujod ◽  
Lee Hui Ming ◽  
M. F. Abas ◽  
M. S. Jadin ◽  
...  

As the rapid development of photovoltaic (PV) technology in recent years with the growth of electricity demand, integration of photovoltaic distributed generation (PVDG) to the distribution system is emerging to fulfil the demand. There are benefits and drawbacks to the distribution system due to the penetration of PVDG. This paper discussed and investigated the impacts of PVDG location and size on distribution power systems. The medium voltage distribution network is connected to the grid with the load being supplied by PVDG. Load flow and short circuit calculation are analyzed by using DigSILENT Power Factory Software. Comparisons have been made between the typical distribution system and the distribution system with the penetration of PVDG. Impacts in which PVDG location and size integrates with distribution system are investigated with the results given from the load flow and short circuit analysis. The results indicate positive impacts on the system interconnected with PVDG such as improving voltage profile, reducing power losses, releasing transmission and distribution grid capacity. It also shows that optimal locations and sizes of DGs are needed to minimize the system’s power losses. On the other hand, it shows that PVDG interconnection to the system can cause reverse power flow at improper DG size and location and increases short circuit level.


2018 ◽  
Vol 8 (3) ◽  
pp. 2998-3003
Author(s):  
M. A. Aman ◽  
S. Ahmad ◽  
B. Noor ◽  
F. W. Karam

Electric power systems are enforced to operate near to their stability limit due to the fast increase in power demand. Therefore, voltage stability has become a primary concern. The main cause of voltage variations is the imbalance between generation and consumption. In order to mitigate variations in voltage profile, most of the modern electric power systems are adopting new emerging technologies such as distributed generation. Validation of standard voltage optimization is a difficult task when distributed generation is integrated to medium and low voltage networks. Integration of distributed generation (DG) will have diverse impacts on voltage levels when connected un-deterministically to the electric distribution system. This paper analyzes both the impacts of un-deterministic large and small size DG on voltage profile. Feasible solutions by incorporating reactors and increasing cross sectional area of cables, variation in voltage profile were mitigated. Detailed simulations were performed in ETAP by modeling and evaluating Kohat road grid station situated in Peshawar, Pakistan. The results anticipated that this approach can be useful to ensure standard voltage profile and better utilization of un-deterministic DG units.


2021 ◽  
Vol 309 ◽  
pp. 01071
Author(s):  
R. Kavyasree ◽  
J. Sridevi ◽  
V. Usha Rani

Nowadays, in the Evolving Power System, reliability testing plays an important role in the design and implementation of distribution systems that operate in a cost-effective manner with minimal customer load disruption. The distributed generation (DG) will play a major role in emerging Power systems as they use a variety of resources and technologies to harness energy in Power systems by reducing Power losses while maintaining the Voltage profile in the system within the limits set. In this paper, two case studies with one DG and two DGs were analysed. The results obtained showed that the DG Number with the plan will increase the reliability of the joint system. The proven system is verified before the IEEE 6-Bus Radial Distributed System to reflect exposure and impact on ETAP software.


2021 ◽  
Vol 25 (02) ◽  
pp. 78-87
Author(s):  
Ihsan M. Jawad ◽  
◽  
Wafaa S. Majeed ◽  

In electrical power systems, unexpected outage of transmission systems, sudden increase of loads, the exit of generators from service, and equipment failure, leads to a contingency occurring on one or several transmission lines. The loads must be within the specified state and the transmission lines should not exceed the thermal limits. One of the important methods used to alleviate the contingency and reduce the congestion lines by injected a Distributed Generation (DG) within an optimal siting and optimal sizing in the distribution network that achieves improvement of the voltage profile as well as leads to reduce the losses. First, to achieve the best goals in this paper that is determined contingency lines, an index has been used called (Active Power Flow Performance Index) (PIRPF) and an equation called (Line Flow Sensitivity Index) (LFSI) is used for finding the optimum site for Distributed Generation. Second, to determine the optimum size for distributed generators, the Genetic Algorithm (GA) is used. Also, this research was distinguished by choosing new sites and sizes according to the GA to obtain the best desired results. Finally, these methodologies were applied to the IEEE-30 bus ring network using the MATPOWER Version 6.0, 16-Dec-2016 program within MATLAP R2018a environment.


2020 ◽  
Vol 2 (1) ◽  
pp. 027-031
Author(s):  
B. A. Kosarev ◽  
◽  
O. A. Lysenko ◽  
V. K. Fedorov ◽  
R. N. Khamitov ◽  
...  

Author(s):  
B. Venkateswara Rao ◽  
Ramesh Devarapalli ◽  
H. Malik ◽  
Sravana Kumar Bali ◽  
Fausto Pedro García Márquez ◽  
...  

The trend of increasing demand creates a gap between generation and load in the field of electrical power systems. This is one of the significant problems for the science, where it require to add new generating units or use of novel automation technology for the better utilization of the existing generating units. The automation technology highly recommends the use of speedy and effective algorithms in optimal parameter adjustment for the system components. So newly developed nature inspired Bat Algorithm (BA) applied to discover the control parameters. In this scenario, this paper considers the minimization of real power generation cost with emission as an objective. Further, to improve the power system performance and reduction in the emission, two of the thermal plants were replaced with wind power plants. In addition, to boost the voltage profile, Static VAR Compensator (SVC) has been integrated. The proposed case study, i.e., considering wind plant and SVC with BA, is applied on the IEEE30 bus system. Due to the incorporation of wind plants into the system, the emission output is reduced, and with the application of SVC voltage profile improved.


Author(s):  
Mostafa Elshahed ◽  
Mahmoud Dawod ◽  
Zeinab H. Osman

Integrating Distributed Generation (DG) units into distribution systems can have an impact on the voltage profile, power flow, power losses, and voltage stability. In this paper, a new methodology for DG location and sizing are developed to minimize system losses and maximize voltage stability index (VSI). A proper allocation of DG has to be determined using the fuzzy ranking method to verify best compromised solutions and achieve maximum benefits. Synchronous machines are utilized and its power factor is optimally determined via genetic optimization to inject reactive power to decrease system losses and improve voltage profile and VSI. The Augmented Lagrangian Genetic Algorithm with nonlinear mixed-integer variables and Non-dominated Sorting Genetic Algorithm have been implemented to solve both single/multi-objective function optimization problems. For proposed methodology effectiveness verification, it is tested on 33-bus and 69-bus radial distribution systems then compared with previous works.


Sign in / Sign up

Export Citation Format

Share Document