scholarly journals Reliability Analysis with Renewable DGs for Loss Reduction in Radial Distributed Generation

2021 ◽  
Vol 309 ◽  
pp. 01071
Author(s):  
R. Kavyasree ◽  
J. Sridevi ◽  
V. Usha Rani

Nowadays, in the Evolving Power System, reliability testing plays an important role in the design and implementation of distribution systems that operate in a cost-effective manner with minimal customer load disruption. The distributed generation (DG) will play a major role in emerging Power systems as they use a variety of resources and technologies to harness energy in Power systems by reducing Power losses while maintaining the Voltage profile in the system within the limits set. In this paper, two case studies with one DG and two DGs were analysed. The results obtained showed that the DG Number with the plan will increase the reliability of the joint system. The proven system is verified before the IEEE 6-Bus Radial Distributed System to reflect exposure and impact on ETAP software.

Author(s):  
N. Md. Saad ◽  
M. Z. Sujod ◽  
Lee Hui Ming ◽  
M. F. Abas ◽  
M. S. Jadin ◽  
...  

As the rapid development of photovoltaic (PV) technology in recent years with the growth of electricity demand, integration of photovoltaic distributed generation (PVDG) to the distribution system is emerging to fulfil the demand. There are benefits and drawbacks to the distribution system due to the penetration of PVDG. This paper discussed and investigated the impacts of PVDG location and size on distribution power systems. The medium voltage distribution network is connected to the grid with the load being supplied by PVDG. Load flow and short circuit calculation are analyzed by using DigSILENT Power Factory Software. Comparisons have been made between the typical distribution system and the distribution system with the penetration of PVDG. Impacts in which PVDG location and size integrates with distribution system are investigated with the results given from the load flow and short circuit analysis. The results indicate positive impacts on the system interconnected with PVDG such as improving voltage profile, reducing power losses, releasing transmission and distribution grid capacity. It also shows that optimal locations and sizes of DGs are needed to minimize the system’s power losses. On the other hand, it shows that PVDG interconnection to the system can cause reverse power flow at improper DG size and location and increases short circuit level.


Author(s):  
Su Mon Myint ◽  
Soe Win Naing

Nowadays, the electricity demand is increasing day by day and hence it is very important not only to extract electrical energy from all possible new power resources but also to reduce power losses to an acceptable minimum level in the existing distribution networks where a large amount of power dissipation occurred. In Myanmar, a lot of power is remarkably dissipated in distribution system.  Among methods in reducing power losses, network reconfiguration method is employed for loss minimization and exhaustive technique is also applied to achieve the minimal loss switching scheme. Network reconfiguration in distribution systems is performed by opening sectionalizing switches and closing tie switches of the network for loss reduction and voltage profile improvement. The distribution network for existing and reconfiguration conditions are modelled and simulated by Electrical Transient Analyzer Program (ETAP) 7.5 version software. The inputs are given based on the real time data collected from 33/11kV substations under Yangon Electricity Supply Board (YESB). The proposed method is tested on 110-Bus, overhead AC radial distribution network of Dagon Seikkan Township since it is long-length, overloaded lines and high level of power dissipation is occurred in this system. According to simulation results of load flow analysis, voltage profile enhancement and power loss reduction for proposed system are revealed in this paper.


Author(s):  
Su Hlaing Win ◽  
Pyone Lai Swe

A Radial Distribution network is important in power system area because of its simple design and reduced cost. Reduction of system losses and improvement of voltage profile is one of the key aspects in power system operation. Distributed generators are beneficial in reducing losses effectively in distribution systems as compared to other methods of loss reduction. Sizing and location of DG sources places an important role in reducing losses in distribution network. Four types of DG are considered in this paper with one DG installed for minimize the total real and reactive power losses. The objective of this methodology is to calculate size and to identify the corresponding optimum location for DG placement for minimizing the total real and reactive power losses and to improve voltage profile   in primary distribution system. It can obtain maximum loss reduction for each of four types of optimally placed DGs. Optimal sizing of Distributed Generation can be calculated using exact loss formula and an efficient approach is used to determine the optimum location for Distributed Generation Placement.  To demonstrate the performance of the proposed approach 36-bus radial distribution system in Belin Substation in Myanmar was tested and validated with different sizes and the result was discussed.


Author(s):  
Ahmed Mohamed Abdelbaset ◽  
AboulFotouh A. Mohamed ◽  
Essam Abou El-Zahab ◽  
M. A. Moustafa Hassan

<p><span>With the widespread of using distributed generation, the connection of DGs in the distribution system causes miscoordination between protective devices. This paper introduces the problems associated with recloser fuse miscoordination (RFM) in the presence of single and multiple DG in a radial distribution system. Two Multi objective optimization problems are presented. The first is based on technical impacts to determine the optimal size and location of DG considering system power loss reduction and enhancement the voltage profile with a certain constraints and the second is used for minimizing the operating time of all fuses and recloser with obtaining the optimum settings of fuse recloser coordination characteristics. Whale Optimizer algorithm (WOA) emulated RFM as an optimization problem. The performance of the proposed methodology is applied to the standard IEEE 33 node test system. The results show the robustness of the proposed algorithm for solving the RFM problem with achieving system power loss reduction and voltage profile enhancement.</span></p>


2019 ◽  
Vol 4 (10) ◽  
pp. 18-23 ◽  
Author(s):  
Abubakar Bawa ◽  
Muhammad Uthman ◽  
Farouq E. Shaibu ◽  
Koledowo Saliu Oyewale

The Point of Common Coupling (PCC) where suppliers’ responsibility and customers demand meet is of great concern due to increase degree of voltage variation assessment; valuable indicator of system conditions (voltage profile). Unstable condition of the power system outside operational or statutory limit, an adverse effect of nonlinear loads usually generate harmonics as well as fundamental frequency voltage variations and increase rate of power losses. These loads need to be compensated for. The major concerns of utility operations is to mitigate adverse effect of this system conditions. This research work focuses on optimal siting and sizing of Distributed Generation (DG) in a 43 bus distribution system. Power losses coupled with voltage deviation, considering objective function that compute present percentage losses in 11kV Dikko feeder, Abuja Electricity Distribution Company (AEDC), Suleja Distribution Network, Nigeria. We identified buses with poor voltage profile without DG installation and determined optimal sizing and siting of DGs where losses can be mitigated and power quality improved. ETAP version 12.6 2014 was used for load flow analysis to establish a decisive based case. The total load of the system considered was (3490 + j2700) kVA. Active and Reactive power losses in the system before DG installation were 246.300 kW and 289.903 kVAR respectively. DGs installation in the case study, has a considerable effects on loss reduction in the network. It is observed that 8.10% and 7.20% active and reactive power loss reduction was achieved while bus voltage improved by 0.4%. Genetic Algorithm Optimization techniques programmed in MATLAB 2015 software was used for optimal placement and sizing of the DG in the system.


2019 ◽  
Vol 4 (4) ◽  
pp. 83-89 ◽  
Author(s):  
Evans Chinemezu Ashigwuike ◽  
Stephen Adole Benson

The growing gap between electric power generated and that demanded is of utmost concern especially in developing economy, hence calling for measures to argument the existing power generated of which DG is a more viable aspect to explore in curtailing this challenges; although been confronted with issue of location and sizing. This research applied Adaptive neuro fuzzy logic technique to optimize DG location and size. A 24 bus radial network was used to demonstrate this process and having a suitable location and size at optimal position reduces power losses and also improves the voltage profile at the buses. The method was simulated using ANFIS toolbox MATLAB R2013b (8.2.0.701) 64-bit software and tested using Gwagwalada injection sub-station feeder 1 system. The results obtained were compared to that obtained using ANN. It was observed that adaptive neuro fuzzy logic technique performed better in terms of reducing power losses compared to ANN technique. The percentage reduction in the power loss at the buses cumulatively is 48.96% for ANN while adaptive neuro fuzzy logic technique is 49.21%. The voltage profile of the networks after optimizing the DG location and sizes using adaptive neuro fuzzy logic technique were also found to be much improved with the lowest bus voltage improved from 0.9284 to 1.05pu.


2019 ◽  
Vol 8 (2S11) ◽  
pp. 2674-2683

In this paper a simple and an efficient technique for determining the size(s) and site(s) for Distributed Generation systems in electrical distribution systems is presented for power loss saving and voltage profile improvement, giving suitable weighing factors to each one of the considered objectives. For this purpose a method of analytic has been developed and used, which is based on change in real and reactive parts in the branch currents caused by the DG located, and is tested on a 69-bus electrical network. Obtained results shows best loss reduction as well as voltage profile enhancement of the network under consideration. Among various power factors assumed, the operation of Distributed Generation corresponding to load power factor can enhances the system performance greatly, compared to that at unity power factor.


Author(s):  
E. M. Abdallah ◽  
M. I. El Sayed ◽  
M. M. Elgazzar ◽  
Amal A. Hassan

Research on the integration of renewable distributed generators (RDGs) in radial distribution systems (RDS) is increased to satisfy the growing load demand, reducing power losses, enhancing voltage profile, and voltage stability index (VSI) of distribution network. This paper presents the application of a new algorithm called ‘coyote optimization algorithm (COA)’ to obtain the optimal location and size of RDGs in RDS at different power factors. The objectives are minimization of power losses, enhancement of voltage stability index, and reduction total operation cost. A detailed performance analysis is implemented on IEEE 33 bus and IEEE 69 bus to demonstrate the effectiveness of the proposed algorithm. The results are found to be in a very good agreement.


Author(s):  
DR. N. VISALI ◽  
U. MEGHANA

Distributed generation (DG) units reduce electric power losses and hence improve reliability and voltage profile. Determination of appropriate size and location of DG is important to maximize overall system efficiency. In this paper, loss index factor method has been presented to determine the appropriate size and proper allocation of DG in a distribution network. Results obtained from this method have been compared with using the repeated load flow method.


2016 ◽  
Vol 78 (6-3) ◽  
Author(s):  
Hadi Suyono ◽  
Rini Nur Hasanah

Small-scale power plants injected into the existing distribution systems are commonly called as embedded or dispersed generation. The continuously increasing penetration of distributed generation becomes a challenge for conventional power systems. Recently developed distributed generation systems are mostly categorized into small scale plants in terms of power output. However, they are expected to be massive in terms of number. The power plants injection as well as their spread in the whole distribution systems will influence the power flow and losses in the network. Some researches have been undertaken recently to relate the embedded plants with the power losses and voltage profile of the networks. This paper presents a study on the influence of penetration level and concentration of distributed generation on power losses in the network. Steady-state power flow analysis is used to examine the power losses variation for a variety of distributed generation penetration. Based on the power flow analysis, voltage profile and power losses due to the power plants injection can be determined. The influence of various technologies used is also considered, including the use of wind power, photovoltaic and micro-hydro power plants. Four different scenarios to determine the effect of dispersed generation injection are proposed, starting from the original grid in the first scenario, being added with photovoltaic plant (0.5MVA) in the second scenario, the addition of wind power plant (0.5MVA) to the grid in the third scenario, and the fourth is the addition of microhydro power plant (1x2.5MVA) to the grid. The considered scenarios are based on the existing potential of the plants in the network system under concern, i.e. the Sengkaling Substation of the Pujon Feeder in Malang, Indonesia. Based on the analysis results, the injection of microhydro power plant (Scenario 4) presents the best influence being compared to the three other scenarios. The microhydro power potential is greater than that of the PV and wind power plants. Besides, it is well located in the middle of distribution system. From the point of view of power loss analysis, Scenario 4 also results in the smallest loss compared to the other scenarios. The least favorable losses reduction is given by Scenario 3 using the wind power plant injection, although the injection of renewable energy power plants in this study in general is proven to improve the voltage profile and reduction of power losses in the system.    


Sign in / Sign up

Export Citation Format

Share Document