Combining RFID Technology and Business Intelligence for Supply Chain  Optimization Scenarios for Retail Logistics

Author(s):  
Henning Baars ◽  
Hans-Georg Kemper ◽  
Heiner Lasi ◽  
Marc Siegel
Author(s):  
Gregory Uche Asiegbu

Organizations produce churns of complex, opaque, and meaningless data. Business intelligence systems (BIS) help organizations efficiently use their data in promptly making quality decisions. The limitations of conventional BIS in processing the volume, variety, and veracity of data available in organizations and the operational cost of maintaining its infrastructure gave rise to implementing Cloud BIS, which describes the deployment of BIS over the cloud platform enabling resource elasticity, moderate usage cost, unlimited resources, and offering greater value at a reduced cost than the traditional BIS. BIS aids a productive supply chain and given the complexities of Africa's supply chain and high volatility of its business environment, BIS over the cloud platform would be a great enabler. This chapter aims to provide an understanding of how BIS will transform supply chain management in Africa's emerging market.


2005 ◽  
Vol 29 (6) ◽  
pp. 1305-1316 ◽  
Author(s):  
E.P. Schulz ◽  
M.S. Diaz ◽  
J.A. Bandoni

2008 ◽  
Vol 3 (1) ◽  
pp. 55-70
Author(s):  
Dharmaraj Veeramani ◽  
Jenny Tang ◽  
Alfonso Gutierrez

Radio frequency identification (RFID) is a rapidly evolving technology for automatic identification and data capture of products. One of the barriers to the adoption of RFID by organizations is difficulty in assessing the potential return on investment (ROI). Much of the research and analyses to date of ROI in implementing RFID technology have focused on the benefits to the retailer. There is a lack of a good understanding of the impact of RFID at upper echelons of the supply chain. In this paper, we present a framework and models for assessing the value of RFID implementation by tier-one suppliers to major retailers. We also discuss our real-life application of this framework to one of Wal-Mart’s top 100 suppliers


2011 ◽  
Vol 179-180 ◽  
pp. 949-954 ◽  
Author(s):  
Xiao Hua Cao ◽  
Juan Wan

Internal material supply management for manufacturing workshops usually suffers from message delay and abnormal logistics events, which seriously holdback the reactivity capability of production system. As a rapid, real-time, accurate information collection tools, Radio Frequency identification (RFID) technology has become an important driver in the production and logistics activities. This paper presents a new idea that uses RFID technology to monitor real-timely the abnormal logistics events which occur at each work space in the internal material supply chain and proposes its construction method in details. With the experimental verification of prototype system, the proposed RFID-based monitoring system can find in time the abnormal logistics events of internal material supply chain and largely improve the circulation velocity of production logistics, and reduce the rate of mistake which frequently occurred in traditional material management based on Kanban.


2015 ◽  
Vol 183 ◽  
pp. 291-307 ◽  
Author(s):  
Niklas von der Assen ◽  
André Sternberg ◽  
Arne Kätelhön ◽  
André Bardow

Potential environmental benefits have been identified for the utilization of carbon dioxide (CO2) as a feedstock for polyurethanes (PUR). CO2 can be utilized in the PUR supply chain in a wide variety of ways ranging from direct CO2 utilization for polyols as a PUR precursor, to indirect CO2 utilization for basic chemicals in the PUR supply chain. In this paper, we present a systematic exploration and environmental evaluation of all direct and indirect CO2 utilization options for flexible and rigid PUR foams. The analysis is based on an LCA-based PUR supply chain optimization model using linear programming to identify PUR production with minimal environmental impacts. The direct utilization of CO2 for polyols allows for large specific impact reductions of up to 4 kg CO2-eq. and 2 kg oil-eq. per kg CO2 utilized, but the amounts of CO2 that can be utilized are limited to 0.30 kg CO2 per kg PUR. The amount of CO2 utilized can be increased to up to 1.7 kg CO2 per kg PUR by indirect CO2 utilization in the PUR supply chain. Indirect CO2 utilization requires hydrogen (H2). The environmental impacts of H2 production strongly affect the impact of indirect CO2 utilization in PUR. To achieve optimal environmental performance under the current fossil-based H2 generation, PUR production can only utilize much less CO2 than theoretically possible. Thus, utilizing as much CO2 in the PUR supply chain as possible is not always environmentally optimal. Clean H2 production is required to exploit the full CO2 utilization potential for environmental impact reduction in PUR production.


Complexity ◽  
2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Ágota Bányai ◽  
Tamás Bányai ◽  
Béla Illés

The globalization of economy and market led to increased networking in the field of manufacturing and services. These manufacturing and service processes including supply chain became more and more complex. The supply chain includes in many cases consignment stores. The design and operation of these complex supply chain processes can be described as NP-hard optimization problems. These problems can be solved using sophisticated models and methods based on metaheuristic algorithms. This research proposes an integrated supply model based on consignment stores. After a careful literature review, this paper introduces a mathematical model to formulate the problem of consignment-store-based supply chain optimization. The integrated model includes facility location and assignment problems to be solved. Next, an enhanced black hole algorithm dealing with multiobjective supply chain model is presented. The sensitivity analysis of the heuristic black hole optimization method is also described to check the efficiency of new operators to increase the convergence of the algorithm. Numerical results with different datasets demonstrate how the proposed model supports the efficiency, flexibility, and reliability of the consignment-store-based supply chain.


Sign in / Sign up

Export Citation Format

Share Document