In situ sports performance analysis system using inertial measurement units, high-FPS video camera, and the Android platform

Author(s):  
John Patrick V. Azcueta ◽  
Nathaniel C. Libatique ◽  
Gregory L. Tangonan
Sensors ◽  
2020 ◽  
Vol 20 (9) ◽  
pp. 2518 ◽  
Author(s):  
Fuengfa Khobkhun ◽  
Mark A. Hollands ◽  
Jim Richards ◽  
Amornpan Ajjimaporn

Camera-based 3D motion analysis systems are considered to be the gold standard for movement analysis. However, using such equipment in a clinical setting is prohibitive due to the expense and time-consuming nature of data collection and analysis. Therefore, Inertial Measurement Units (IMUs) have been suggested as an alternative to measure movement in clinical settings. One area which is both important and challenging is the assessment of turning kinematics in individuals with movement disorders. This study aimed to validate the use of IMUs in the measurement of turning kinematics in healthy adults compared to a camera-based 3D motion analysis system. Data were collected from twelve participants using a Vicon motion analysis system which were compared with data from four IMUs placed on the forehead, middle thorax, and feet in order to determine accuracy and reliability. The results demonstrated that the IMU sensors produced reliable kinematic measures and showed excellent reliability (ICCs 0.80–0.98) and no significant differences were seen in paired t-tests in all parameters when comparing the two systems. This suggests that the IMU sensors provide a viable alternative to camera-based motion capture that could be used in isolation to gather data from individuals with movement disorders in clinical settings and real-life situations.


Author(s):  
Pratima Saravanan ◽  
Jiyun Yao ◽  
Jessica Menold

Clinical gait analysis is used for diagnosing, assessing, and for monitoring a patient by analyzing their kinetics, kinematics and electromyography while walking. Traditionally, gait analysis is performed in a formal laboratory environment making use of several high-resolution cameras, either video or infrared. The subject is asked to walk on a force platform or a treadmill with several markers attached to their body, allowing cameras to capture the joint coordinates across time. The space required for such a laboratory is non-trivial and often the associated costs of such an experimental setup is prohibitively expensive. The current work aims to investigate the coupled use of a Microsoft Kinect and Inertial Measurement Units as a portable and cost-efficient gait analysis system. Past studies on assessing gait using either Kinect or Inertial Measurement Units concluded that they achieve medium reliability individually due to some drawbacks related to each sensor. In this study, we propose that a combined system is efficient in detecting different phases of human gait, and the combination of sensors complement each other by overcoming the individual sensor drawbacks. Preliminary findings indicate that the IMU sensors are efficient in providing gait kinematics such as step length, stride length, velocity, cadence, etc., whereas the Kinect sensor helps in studying the gait asymmetries by comparing the right and left joint, such as hips, knees, and ankle.


Measurement ◽  
2021 ◽  
pp. 110237
Author(s):  
Domenico Capriglione ◽  
Marco Carratù ◽  
Marcantonio Catelani ◽  
Lorenzo Ciani ◽  
Gabriele Patrizi ◽  
...  

Author(s):  
Pablo Aqueveque ◽  
Sergio Sobarzo ◽  
Francisco Saavedra ◽  
Claudio Maldonado ◽  
Britam Gómez

One of the most important movements performed by the humans is gait. Biomechanical Gait analysis is usually by optical capture systems. However, such systems are expensive and sensitive to light and obstacles. In order to reduce those costs a system based on Inertial Measurements Units (IMU) is proposed. IMU are a good option to make movement analisys indoor with a low post-processing data, allowing to connect those systems to an Android platform. The design is based on two elements: a) The IMU sensors and the b) Android device. The IMU sensor is simple, small (35 x 35 mm), portable and autonomous (7.8 hrs). A resolution of 0.01° in their measurements is obtained, and sends data via Bluetooth link. The Android application works for Android 4.2 or higher, and it is compatible with Bluetooth devices 2.0 or higher. Three IMU sensors send data to a Tablet wirelessly, in order to evaluate the angles evolution for each joint of the leg (hip, knee and ankle). This information is used to calculate gait index and evaluate the gait quality online during the physical therapist is working with the patient.


2017 ◽  
Vol 3 (1) ◽  
pp. 7-10 ◽  
Author(s):  
Jan Kuschan ◽  
Henning Schmidt ◽  
Jörg Krüger

Abstract:This paper presents an analysis of two distinct human lifting movements regarding acceleration and angular velocity. For the first movement, the ergonomic one, the test persons produced the lifting power by squatting down, bending at the hips and knees only. Whereas performing the unergonomic one they bent forward lifting the box mainly with their backs. The measurements were taken by using a vest equipped with five Inertial Measurement Units (IMU) with 9 Dimensions of Freedom (DOF) each. In the following the IMU data captured for these two movements will be evaluated using statistics and visualized. It will also be discussed with respect to their suitability as features for further machine learning classifications. The reason for observing these movements is that occupational diseases of the musculoskeletal system lead to a reduction of the workers’ quality of life and extra costs for companies. Therefore, a vest, called CareJack, was designed to give the worker a real-time feedback about his ergonomic state while working. The CareJack is an approach to reduce the risk of spinal and back diseases. This paper will also present the idea behind it as well as its main components.


2021 ◽  
pp. 1-19
Author(s):  
Thomas Rietveld ◽  
Barry S. Mason ◽  
Victoria L. Goosey-Tolfrey ◽  
Lucas H. V. van der Woude ◽  
Sonja de Groot ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document