Influences of contact opening speeds in the range of 0.5 to 200mm/s on break arc behaviors of Ag and AgSno2 contacts in DCl4V inductive load circuits of 1 to 5A

Author(s):  
Makoto Hasegawa ◽  
Hiroya Sonobe ◽  
Yuki Ohmae
Keyword(s):  
2019 ◽  
Vol 963 ◽  
pp. 797-800 ◽  
Author(s):  
Ajit Kanale ◽  
Ki Jeong Han ◽  
B. Jayant Baliga ◽  
Subhashish Bhattacharya

The high-temperature switching performance of a 1.2kV SiC JBSFET is compared with a 1.2kV SiC MOSFET using a clamped inductive load switching circuit representing typical H-bridge inverters. The switching losses of the SiC MOSFET are also evaluated with a SiC JBS Diode connected antiparallel to it. Measurements are made with different high-side and low-side device options across a range of case temperatures. The JBSFET is observed to display a reduction in peak turn-on current – up to 18.9% at 150°C and a significantly lesser turn-on switching loss – up to 46.6% at 150°C, compared to the SiC MOSFET.


2016 ◽  
Vol 2016 ◽  
pp. 1-11
Author(s):  
R. K. Dhatrak ◽  
R. K. Nema ◽  
D. M. Deshpande

In today’s industrial world multilevel inverter (MLI) got a significant importance in medium voltage application and also a very potential topic for researchers. It is experienced that studying and comparing results of multilevel inverter (MLI) at distinct levels are a costlier and time consuming issue for any researcher if he fabricate different inverters for each level, as designing power modules simultaneously for different level is a cumbersome task. In this paper a flexible quotient has been proposed to recognize possible conversion of available MLI to few lower level inverters by appropriately changing microcontroller programming. This is an attempt to obtain such change in levels through simulation using MATLAB Simulink on inductive load which may also be applied to induction motor. Experimental results of pulse generation using dsPIC33EP256MC202 demonstrate the feasibility of proposed scheme. Proposed flexible quotient successfully demonstrates that a five-level inverter may be operated as three and two levels also. The paper focuses on odd levels only as common mode voltage (CMV) can be reduced to zero and performance of drives is better than even level. Simulated and experimental results are given in paper.


2015 ◽  
Vol 13 (2) ◽  
pp. 167
Author(s):  
José Luis Calvo-Rolle ◽  
Héctor Quintian-Pardo ◽  
Emilio Corchado ◽  
María del Carmen Meizoso-López ◽  
Ramón Ferreiro García

Author(s):  
Achmad Solih ◽  
Jamaaluddin Jamaaluddin

Panel system power distribution at Lippo Plaza Mall Sidoarjo consists of several parts, namely from Cubicle 20 KV, 20 KV step-down transformer for 380 V, then the supply to LVMDP (Low Voltage Main Distribution Panel) The new panel to the user. Before delivery to users to note that the power factor is corrected using a capacitor bank. Less good a power factor is turned into inductive load on the capacitor bank so that temperatures high  because of high load resulting capacitor bank erupt. To overcome in this study proposes a safety panel automation power distribution control system using a microcontroller. Control system microcontrollers for safety panel power distribution consists of: Microcontroller (Arduino Nano), Light sensor (LDR), temperature sensor (LM35DZ), LCD 16x2 I2C, Actuators (fan, buzzer, relay switch breaker network three phase), switch ( relay 5 VDC), ADC as Input data. The working principle of this microcontroller LM35DZ if the sensor detects a high temperature fan will flash, if the LDR sensor detects sparks then the buzzer will sound as a warning sign of the dangers and disconnected the electricity network. From the design of a safety tool for power distribution panels due to high temperatures or sparks as well as the expected rate of fire outbreaks can be prevented.


Sign in / Sign up

Export Citation Format

Share Document