Retrieving Real Time Data Through IOT Devices and Storing Securely on Cloud Using Li-Fi

Author(s):  
Jayant D. Bokefode ◽  
Swapnaja A. Ubale ◽  
Roopali M. Gaikwad

Convergence of Cloud, IoT, Networking devices and Data science has ignited a new era of smart cities concept all around us. The backbone of any smart city is the underlying infrastructure involving thousands of IoT devices connected together to work in real time. Data Analytics can play a crucial role in gaining valuable insights into the volumes of data generated by these devices. The objective of this paper is to apply some most commonly used classification algorithms to a real time dataset and compare their performance on IoT data. The performance summary of the algorithms under test is also tabulated


Author(s):  
A. Carvalho ◽  
N. O'Mahony ◽  
L. Krpalkova ◽  
S. Campbell ◽  
J. Walsh ◽  
...  

2019 ◽  
Vol 8 (4) ◽  
pp. 9266-9270

Internet of things (IoT) is a quick-moving gathering of web associated sensors implanted in a wide-extending assortment of physical articles. While things can be any physical item (energize or lifeless) on the planet, to which you could associate or implant a sensor. Sensors can take countless potential estimations. Sensors produce gigantic measures of new, organized, unstructured, ongoing information, and structures enormous information. IoT information is exceptionally huge and confused, which can give genuine-time setting and supposition data about genuine articles or nature. Among the different challenges that the present IoT is facing, the three prime areas of concern are, need of efficient framework to receive IoT data, a need of a new scalable parallel indexing technique for efficiently storing IoT data and securing IoT generated data at all the stages i.e. from the edge devices to the cloud. A new efficient framework is introduced, which can retrieve meaningful information from these IoT devices and efficiently index it. For processing such enormous real time data generated from IoT devices, new techniques are introducing which are scalable and secure. The research proposes a general IoT network architecture. It describes the interconnectivity among the different things such as sensors, receivers and cloud. The proposed architecture efficiently receives real time data from all the sensors. The prime focus is on the elimination of the existing issues in IoT. Along with this, the provision has to make for standard future proofing against these new proposed schemes.


Blockchain technology uses the cryptographic technique to create expanding list of data records called blocks. Along with transaction and timestamp data, each block holds a hash value obtained using cryptographic technique. Blockchain gains importance for its decentralized data transaction and authorization without the need for third-party intervention. Although, it is mostly used in Finance sector these days, due to its inherent ability to protect data it can be applied to every field of computation especially in fields where data transaction is voluminous. Internet of Things (IoT) is one such area where it involves collection, transfer and processing of real time data from objects, humans and sensors to automate various tasks. Hence, this paper reviews the blockchain technology, and how it can be coupled with IoT to overcome the privacy and security issues. This paper first systematically introduces the concept of blockchain technology, its applications along with the need for IoT devices and its implementation. Finally, it discusses the blockchain based IoT (BIoT) its architecture, advantages, challenges in implementation


Proceedings ◽  
2018 ◽  
Vol 2 (19) ◽  
pp. 1233
Author(s):  
Daniel Sánchez ◽  
Andrés López ◽  
Florina Mendoza ◽  
Patricia Arias  Cabarcos

IoT devices provide with real-time data to a rich ecosystems of services and applications that will be of uttermost importance for ubiquitous computing. The volume of data and the involved subscribe/notify signaling will likely become a challenge also for access and core netkworks. Designers may opt for microservice architectures and fog computing to address this challenge while offering the required flexibility for the main players of ubiquitous computing: nomadic users. Microservices require strong security support for Fog computing, to rely on nodes in the boundary of the network for secure data collection and processing. IoT low cost devices face outdated certificates and security support, due to the elapsed time from manufacture to deployment. In this paper we propose a solution based on microservice architectures and DNSSEC, DANE and chameleon signatures to overcome these difficulties. We will show how trap doors included in the certificates allow a secure and flexible delegation for off-loading data collection and processing to the fog. The main result is showing this requires minimal manufacture device configuration, thanks to DNSSEC support.


Diabetes ◽  
2020 ◽  
Vol 69 (Supplement 1) ◽  
pp. 399-P
Author(s):  
ANN MARIE HASSE ◽  
RIFKA SCHULMAN ◽  
TORI CALDER

Sign in / Sign up

Export Citation Format

Share Document