Identification of different types of leucocytes in dried blood smears using neural networks

Author(s):  
H.O. Gulcur ◽  
G. Buyukaksoy
Author(s):  
K Venkata Shiva Rama Krishna Reddy ◽  
◽  
S Phani Kumar ◽  

Malaria parasitized detection is very important to detect as there are so many deaths due to false detection of malaria in medical reports. So analysis has gained a lot of attention in recent years. Detection of malaria is important as fast as possible because detecting malaria is difficult in blood smears. Our idea is to build a transfer learning model and detect the thick blood smears whether the presence of malaria parasites in a drop of blood. The data consists of 5000 each infected and uninfected data obtained from the NIH website. In this paper, I propose to use three different types of neural networks for the performance evaluation of the malaria data by transfer learning using CNN, VGG19, and fine-tuned VGG19. Transfer learning model performed well among various other models by achieving a precision of 98 percent and an f-1 score of 96 percent.


2020 ◽  
Vol 68 (4) ◽  
pp. 283-293
Author(s):  
Oleksandr Pogorilyi ◽  
Mohammad Fard ◽  
John Davy ◽  
Mechanical and Automotive Engineering, School ◽  
Mechanical and Automotive Engineering, School ◽  
...  

In this article, an artificial neural network is proposed to classify short audio sequences of squeak and rattle (S&R) noises. The aim of the classification is to see how accurately the trained classifier can recognize different types of S&R sounds. Having a high accuracy model that can recognize audible S&R noises could help to build an automatic tool able to identify unpleasant vehicle interior sounds in a matter of seconds from a short audio recording of the sounds. In this article, the training method of the classifier is proposed, and the results show that the trained model can identify various classes of S&R noises: simple (binary clas- sification) and complex ones (multi class classification).


Author(s):  
Samuel Humphries ◽  
Trevor Parker ◽  
Bryan Jonas ◽  
Bryan Adams ◽  
Nicholas J Clark

Quick identification of building and roads is critical for execution of tactical US military operations in an urban environment. To this end, a gridded, referenced, satellite images of an objective, often referred to as a gridded reference graphic or GRG, has become a standard product developed during intelligence preparation of the environment. At present, operational units identify key infrastructure by hand through the work of individual intelligence officers. Recent advances in Convolutional Neural Networks, however, allows for this process to be streamlined through the use of object detection algorithms. In this paper, we describe an object detection algorithm designed to quickly identify and label both buildings and road intersections present in an image. Our work leverages both the U-Net architecture as well the SpaceNet data corpus to produce an algorithm that accurately identifies a large breadth of buildings and different types of roads. In addition to predicting buildings and roads, our model numerically labels each building by means of a contour finding algorithm. Most importantly, the dual U-Net model is capable of predicting buildings and roads on a diverse set of test images and using these predictions to produce clean GRGs.


2021 ◽  
Vol 13 (11) ◽  
pp. 6194
Author(s):  
Selma Tchoketch_Kebir ◽  
Nawal Cheggaga ◽  
Adrian Ilinca ◽  
Sabri Boulouma

This paper presents an efficient neural network-based method for fault diagnosis in photovoltaic arrays. The proposed method was elaborated on three main steps: the data-feeding step, the fault-modeling step, and the decision step. The first step consists of feeding the real meteorological and electrical data to the neural networks, namely solar irradiance, panel temperature, photovoltaic-current, and photovoltaic-voltage. The second step consists of modeling a healthy mode of operation and five additional faulty operational modes; the modeling process is carried out using two networks of artificial neural networks. From this step, six classes are obtained, where each class corresponds to a predefined model, namely, the faultless scenario and five faulty scenarios. The third step involves the diagnosis decision about the system’s state. Based on the results from the above step, two probabilistic neural networks will classify each generated data according to the six classes. The obtained results show that the developed method can effectively detect different types of faults and classify them. Besides, this method still achieves high performances even in the presence of noises. It provides a diagnosis even in the presence of data injected at reduced real-time, which proves its robustness.


Sensors ◽  
2020 ◽  
Vol 21 (1) ◽  
pp. 47
Author(s):  
Vasyl Teslyuk ◽  
Artem Kazarian ◽  
Natalia Kryvinska ◽  
Ivan Tsmots

In the process of the “smart” house systems work, there is a need to process fuzzy input data. The models based on the artificial neural networks are used to process fuzzy input data from the sensors. However, each artificial neural network has a certain advantage and, with a different accuracy, allows one to process different types of data and generate control signals. To solve this problem, a method of choosing the optimal type of artificial neural network has been proposed. It is based on solving an optimization problem, where the optimization criterion is an error of a certain type of artificial neural network determined to control the corresponding subsystem of a “smart” house. In the process of learning different types of artificial neural networks, the same historical input data are used. The research presents the dependencies between the types of neural networks, the number of inner layers of the artificial neural network, the number of neurons on each inner layer, the error of the settings parameters calculation of the relative expected results.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Eva Volna ◽  
Martin Kotyrba ◽  
Hashim Habiballa

The paper deals with ECG prediction based on neural networks classification of different types of time courses of ECG signals. The main objective is to recognise normal cycles and arrhythmias and perform further diagnosis. We proposed two detection systems that have been created with usage of neural networks. The experimental part makes it possible to load ECG signals, preprocess them, and classify them into given classes. Outputs from the classifiers carry a predictive character. All experimental results from both of the proposed classifiers are mutually compared in the conclusion. We also experimented with the new method of time series transparent prediction based on fuzzy transform with linguistic IF-THEN rules. Preliminary results show interesting results based on the unique capability of this approach bringing natural language interpretation of particular prediction, that is, the properties of time series.


1994 ◽  
Vol 71 (1) ◽  
pp. 294-308 ◽  
Author(s):  
I. Ziv ◽  
D. A. Baxter ◽  
J. H. Byrne

1. We describe a simulator for neural networks and action potentials (SNNAP) that can simulate up to 30 neurons, each with up to 30 voltage-dependent conductances, 30 electrical synapses, and 30 multicomponent chemical synapses. Voltage-dependent conductances are described by Hodgkin-Huxley type equations, and the contributions of time-dependent synaptic conductances are described by second-order differential equations. The program also incorporates equations for simulating different types of neural modulation and synaptic plasticity. 2. Parameters, initial conditions, and output options for SNNAP are passed to the program through a number of modular ASCII files. These modules can be modified by commonly available text editors that use a conventional (i.e., character based) interface or by an editor incorporated into SNNAP that uses a graphical interface. The modular design facilitates the incorporation of existing modules into new simulations. Thus libraries can be developed of files describing distinctive cell types and files describing distinctive neural networks. 3. Several different types of neurons with distinct biophysical properties and firing properties were simulated by incorporating different combinations of voltage-dependent Na+, Ca2+, and K+ channels as well as Ca(2+)-activated and Ca(2+)-inactivated channels. Simulated cells included those that respond to depolarization with tonic firing, adaptive firing, or plateau potentials as well as endogenous pacemaker and bursting cells. 4. Several types of simple neural networks were simulated that included feed-forward excitatory and inhibitory chemical synaptic connections, a network of electrically coupled cells, and a network with feedback chemical synaptic connections that simulated rhythmic neural activity. In addition, with the use of the equations describing electrical coupling, current flow in a branched neuron with 18 compartments was simulated. 5. Enhancement of excitability and enhancement of transmitter release, produced by modulatory transmitters, were simulated by second-messenger-induced modulation of K+ currents. A depletion model for synaptic depression was also simulated. 6. We also attempted to simulate the features of a more complicated central pattern generator, inspired by the properties of neurons in the buccal ganglia of Aplysia. Dynamic changes in the activity of this central pattern generator were produced by a second-messenger-induced modulation of a slow inward current in one of the neurons.


Author(s):  
Jana Weinlichová ◽  
Michael Štencl

For having retrospection for all over the data which are used, analyzed, evaluated and for a future incident predictions are used Management Information Systems and Business Intelligence. In case of not to be able to apply standard methods of data processing there can be with benefit applied an Artificial Intelligence. In this article will be referred to proofed abilities of Neural Networks. The Neural Networks is supported by many software products related to provide effective solution of manager issues. Those products are given as primary support for manager issues solving. We were tried to find reciprocally between products using Neural Networks and between Management Information Systems for finding a real possibility of applying Neural Networks as a direct part of Management Information Systems (MIS). In the article are presented possibilities to apply Neural Networks on different types of tasks in MIS.


2018 ◽  
Vol 32 (09) ◽  
pp. 1850116 ◽  
Author(s):  
Manman Yuan ◽  
Weiping Wang ◽  
Xiong Luo ◽  
Lixiang Li ◽  
Jürgen Kurths ◽  
...  

This paper is concerned with the exponential lag function projective synchronization of memristive multidirectional associative memory neural networks (MMAMNNs). First, we propose a new model of MMAMNNs with mixed time-varying delays. In the proposed approach, the mixed delays include time-varying discrete delays and distributed time delays. Second, we design two kinds of hybrid controllers. Traditional control methods lack the capability of reflecting variable synaptic weights. In this paper, the controllers are carefully designed to confirm the process of different types of synchronization in the MMAMNNs. Third, sufficient criteria guaranteeing the synchronization of system are derived based on the derive-response concept. Finally, the effectiveness of the proposed mechanism is validated with numerical experiments.


Sign in / Sign up

Export Citation Format

Share Document