The Experimental Comparison of Under-Panel-Sensing (UPS) Using FMCW Radar Sensor

Author(s):  
Dingyang Wang ◽  
Junyoung Park ◽  
Sung Ho Cho
Sensors ◽  
2020 ◽  
Vol 20 (7) ◽  
pp. 2001 ◽  
Author(s):  
Eugin Hyun ◽  
YoungSeok Jin

In this paper, we propose a Doppler-spectrum feature-based human–vehicle classification scheme for an FMCW (frequency-modulated continuous wave) radar sensor. We introduce three novel features referred to as the scattering point count, scattering point difference, and magnitude difference rate features based on the characteristics of the Doppler spectrum in two successive frames. We also use an SVM (support vector machine) and BDT (binary decision tree) for training and validation of the three aforementioned features. We measured the signals using a 24-GHz FMCW radar front-end module and a real-time data acquisition module and extracted three features from a walking human and a moving vehicle in the field. We then repeatedly measured the classification decision rate of the proposed algorithm using the SVM and BDT, finding that the average performance exceeded 99% and 96% for the walking human and the moving vehicle, respectively.


2018 ◽  
Vol 18 (8) ◽  
pp. 3278-3289 ◽  
Author(s):  
Zhenyuan Zhang ◽  
Zengshan Tian ◽  
Mu Zhou

Sensors ◽  
2020 ◽  
Vol 20 (10) ◽  
pp. 2897 ◽  
Author(s):  
Woosuk Kim ◽  
Hyunwoong Cho ◽  
Jongseok Kim ◽  
Byungkwan Kim ◽  
Seongwook Lee

This paper proposes a method to simultaneously detect and classify objects by using a deep learning model, specifically you only look once (YOLO), with pre-processed automotive radar signals. In conventional methods, the detection and classification in automotive radar systems are conducted in two successive stages; however, in the proposed method, the two stages are combined into one. To verify the effectiveness of the proposed method, we applied it to the actual radar data measured using our automotive radar sensor. According to the results, our proposed method can simultaneously detect targets and classify them with over 90% accuracy. In addition, it shows better performance in terms of detection and classification, compared with conventional methods such as density-based spatial clustering of applications with noise or the support vector machine. Moreover, the proposed method especially exhibits better performance when detecting and classifying a vehicle with a long body.


Author(s):  
Steffen Hansen ◽  
Christian Bredendiek ◽  
Gunnar Briese ◽  
Andre Froehly ◽  
Reinhold Herschel ◽  
...  

Electronics ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 573 ◽  
Author(s):  
Onur Toker ◽  
Suleiman Alsweiss

In this paper, we propose a novel 77 GHz automotive radar sensor, and demonstrate its cyberattack resilience using real measurements. The proposed system is built upon a standard Frequency Modulated Continuous Wave (FMCW) radar RF-front end, and the novelty is in the DSP algorithm used at the firmware level. All attack scenarios are based on real radar signals generated by Texas Instruments AWR series 77 GHz radars, and all measurements are done using the same radar family. For sensor networks, including interconnected autonomous vehicles sharing radar measurements, cyberattacks at the network/communication layer is a known critical problem, and has been addressed by several different researchers. What is addressed in this paper is cyberattacks at the physical layer, that is, adversarial agents generating 77 GHz electromagnetic waves which may cause a false target detection, false distance/velocity estimation, or not detecting an existing target. The main algorithm proposed in this paper is not a predictive filtering based cyberattack detection scheme where an “unusual” difference between measured and predicted values triggers an alarm. The core idea is based on a kind of physical challenge-response authentication, and its integration into the radar DSP firmware.


2018 ◽  
Vol 28 (12) ◽  
pp. 1143-1145 ◽  
Author(s):  
Andre Durr ◽  
Benedikt Schweizer ◽  
Jonathan Bechter ◽  
Christian Waldschmidt

Sign in / Sign up

Export Citation Format

Share Document