Colon Cancer Prediction from Gene Expression Profiles Using Kernel Based Support Vector Machine

Author(s):  
Md. Abu Horaira ◽  
Md. Shakil Ahmed ◽  
Md. Hadiul Kabir ◽  
Md. Nurul Haque Mollah ◽  
Md. Ashiqur Rahman Shah
Author(s):  
Bong-Hyun Kim ◽  
Kijin Yu ◽  
Peter C W Lee

Abstract Motivation Cancer classification based on gene expression profiles has provided insight on the causes of cancer and cancer treatment. Recently, machine learning-based approaches have been attempted in downstream cancer analysis to address the large differences in gene expression values, as determined by single-cell RNA sequencing (scRNA-seq). Results We designed cancer classifiers that can identify 21 types of cancers and normal tissues based on bulk RNA-seq as well as scRNA-seq data. Training was performed with 7398 cancer samples and 640 normal samples from 21 tumors and normal tissues in TCGA based on the 300 most significant genes expressed in each cancer. Then, we compared neural network (NN), support vector machine (SVM), k-nearest neighbors (kNN) and random forest (RF) methods. The NN performed consistently better than other methods. We further applied our approach to scRNA-seq transformed by kNN smoothing and found that our model successfully classified cancer types and normal samples. Availability and implementation Cancer classification by neural network. Supplementary information Supplementary data are available at Bioinformatics online.


2019 ◽  
Vol 12 (S7) ◽  
Author(s):  
Jia Wen ◽  
Benika Hall ◽  
Xinghua Shi

Abstract Background Colon cancer is one of the common cancers in human. Although the number of annual cases has decreased drastically, prognostic screening and translational methods can be improved. Hence, it is critical to understand the molecular mechanisms of disease progression and prognosis. Results In this study, we develop a new strategy for integrating microRNA and gene expression profiles together with clinical information toward understanding the regulation of colon cancer. Particularly, we use this approach to identify microRNA and gene expression networks that are specific to certain pathological stages. To demonstrate the application of our method, we apply this approach to identify microRNA and gene interactions that are specific to pathological stages of colon cancer in The Cancer Genome Atlas (TCGA) datasets. Conclusions Our results show that there are significant differences in network connections between miRNAs and genes in different pathological stages of colon cancer. These findings point to a hypothesis that these networks signify different roles of microRNA and gene regulation in the pathogenesis and tumorigenesis of colon cancer.


Author(s):  
JUANA CANUL-REICH ◽  
LAWRENCE O. HALL ◽  
DMITRY B. GOLDGOF ◽  
JOHN N. KORECKI ◽  
STEVEN ESCHRICH

Gene-expression microarray datasets often consist of a limited number of samples with a large number of gene-expression measurements, usually on the order of thousands. Therefore, dimensionality reduction is critical prior to any classification task. In this work, the iterative feature perturbation method (IFP), an embedded gene selector, is introduced and applied to four microarray cancer datasets: colon cancer, leukemia, Moffitt colon cancer, and lung cancer. We compare results obtained by IFP to those of support vector machine-recursive feature elimination (SVM-RFE) and the t-test as a feature filter using a linear support vector machine as the base classifier. Analysis of the intersection of gene sets selected by the three methods across the four datasets was done. Additional experiments included an initial pre-selection of the top 200 genes based on their p values. IFP and SVM-RFE were then applied on the reduced feature sets. These results showed up to 3.32% average performance improvement for IFP across the four datasets. A statistical analysis (using the Friedman/Holm test) for both scenarios showed the highest accuracies came from the t-test as a filter on experiments without gene pre-selection. IFP and SVM-RFE had greater classification accuracy after gene pre-selection. Analysis showed the t-test is a good gene selector for microarray data. IFP and SVM-RFE showed performance improvement on a reduced by t-test dataset. The IFP approach resulted in comparable or superior average class accuracy when compared to SVM-RFE on three of the four datasets. The same or similar accuracies can be obtained with different sets of genes.


2003 ◽  
Vol 124 (4) ◽  
pp. A239
Author(s):  
Petar Novakovic ◽  
Kyoung-Jin Sohn ◽  
Young-In J. Kim

2011 ◽  
Vol 10 ◽  
pp. CIN.S7789 ◽  
Author(s):  
Hiroshi Matsumoto ◽  
Yoshikuni Yakabe ◽  
Fumiyo Saito ◽  
Koichi Saito ◽  
Kayo Sumida ◽  
...  

We have previously shown the hepatic gene expression profiles of carcinogens in 28-day toxicity tests were clustered into three major groups (Group-1 to 3). Here, we developed a new prediction method for Group-1 carcinogens which consist mainly of genotoxic rat hepatocarcinogens. The prediction formula was generated by a support vector machine using 5 selected genes as the predictive genes and predictive score was introduced to judge carcinogenicity. It correctly predicted the carcinogenicity of all 17 Group-1 chemicals and 22 of 24 non-carcinogens regardless of genotoxicity. In the dose-response study, the prediction score was altered from negative to positive as the dose increased, indicating that the characteristic gene expression profile emerged over a range of carcinogen-specific doses. We conclude that the prediction formula can quantitatively predict the carcinogenicity of Group-1 carcinogens. The same method may be applied to other groups of carcinogens to build a total system for prediction of carcinogenicity.


2012 ◽  
Vol 11 ◽  
pp. CIN.S10375 ◽  
Author(s):  
Mark Burton ◽  
Mads Thomassen ◽  
Qihua Tan ◽  
Torben A. Kruse

Background The popularity of a large number of microarray applications has in cancer research led to the development of predictive or prognostic gene expression profiles. However, the diversity of microarray platforms has made the full validation of such profiles and their related gene lists across studies difficult and, at the level of classification accuracies, rarely validated in multiple independent datasets. Frequently, while the individual genes between such lists may not match, genes with same function are included across such gene lists. Development of such lists does not take into account the fact that genes can be grouped together as metagenes (MGs) based on common characteristics such as pathways, regulation, or genomic location. Such MGs might be used as features in building a predictive model applicable for classifying independent data. It is, therefore, demanding to systematically compare independent validation of gene lists or classifiers based on metagene or individual gene (SG) features. Methods In this study we compared the performance of either metagene- or single gene-based feature sets and classifiers using random forest and two support vector machines for classifier building. The performance within the same dataset, feature set validation performance, and validation performance of entire classifiers in strictly independent datasets were assessed by 10 times repeated 10-fold cross validation, leave-one-out cross validation, and one-fold validation, respectively. To test the significance of the performance difference between MG- and SG-features/classifiers, we used a repeated down-sampled binomial test approach. Results MG- and SG-feature sets are transferable and perform well for training and testing prediction of metastasis outcome in strictly independent data sets, both between different and within similar microarray platforms, while classifiers had a poorer performance when validated in strictly independent datasets. The study showed that MG- and SG-feature sets perform equally well in classifying independent data. Furthermore, SG-classifiers significantly outperformed MG-classifier when validation is conducted between datasets using similar platforms, while no significant performance difference was found when validation was performed between different platforms. Conclusion Prediction of metastasis outcome in lymph node–negative patients by MG- and SG-classifiers showed that SG-classifiers performed significantly better than MG-classifiers when validated in independent data based on the same microarray platform as used for developing the classifier. However, the MG- and SG-classifiers had similar performance when conducting classifier validation in independent data based on a different microarray platform. The latter was also true when only validating sets of MG- and SG-features in independent datasets, both between and within similar and different platforms.


2005 ◽  
Vol 17 (06) ◽  
pp. 300-308 ◽  
Author(s):  
LI-YEH CHUANG ◽  
CHENG-HONG YANG ◽  
LI-CHENG JIN

The support vector machine (SVM) is a new learning method and has shown comparable or better results than the neural networks on some applications. In this paper, we applied SVM to classify multiple cancer types by gene expression profiles and exploit some strategies of the SVM method, including fuzzy logic and statistical theories. Using the proposed strategies and outlier detection methods, the FSVM (fuzzy support vector machine) can achieve a comparable or better performance than other methods, and provide a more flexible architecture to discriminate against SRBCT and non-SRBCT samples.


Sign in / Sign up

Export Citation Format

Share Document