ITERATIVE FEATURE PERTURBATION AS A GENE SELECTOR FOR MICROARRAY DATA

Author(s):  
JUANA CANUL-REICH ◽  
LAWRENCE O. HALL ◽  
DMITRY B. GOLDGOF ◽  
JOHN N. KORECKI ◽  
STEVEN ESCHRICH

Gene-expression microarray datasets often consist of a limited number of samples with a large number of gene-expression measurements, usually on the order of thousands. Therefore, dimensionality reduction is critical prior to any classification task. In this work, the iterative feature perturbation method (IFP), an embedded gene selector, is introduced and applied to four microarray cancer datasets: colon cancer, leukemia, Moffitt colon cancer, and lung cancer. We compare results obtained by IFP to those of support vector machine-recursive feature elimination (SVM-RFE) and the t-test as a feature filter using a linear support vector machine as the base classifier. Analysis of the intersection of gene sets selected by the three methods across the four datasets was done. Additional experiments included an initial pre-selection of the top 200 genes based on their p values. IFP and SVM-RFE were then applied on the reduced feature sets. These results showed up to 3.32% average performance improvement for IFP across the four datasets. A statistical analysis (using the Friedman/Holm test) for both scenarios showed the highest accuracies came from the t-test as a filter on experiments without gene pre-selection. IFP and SVM-RFE had greater classification accuracy after gene pre-selection. Analysis showed the t-test is a good gene selector for microarray data. IFP and SVM-RFE showed performance improvement on a reduced by t-test dataset. The IFP approach resulted in comparable or superior average class accuracy when compared to SVM-RFE on three of the four datasets. The same or similar accuracies can be obtained with different sets of genes.

2021 ◽  
Vol 18 (17) ◽  
Author(s):  
Micheal Olaolu AROWOLO ◽  
Marion Olubunmi ADEBIYI ◽  
Chiebuka Timothy NNODIM ◽  
Sulaiman Olaniyi ABDULSALAM ◽  
Ayodele Ariyo ADEBIYI

As mosquito parasites breed across many parts of the sub-Saharan Africa part of the world, infected cells embrace an unpredictable and erratic life period. Millions of individual parasites have gene expressions. Ribonucleic acid sequencing (RNA-seq) is a popular transcriptional technique that has improved the detection of major genetic probes. The RNA-seq analysis generally requires computational improvements of machine learning techniques since it computes interpretations of gene expressions. For this study, an adaptive genetic algorithm (A-GA) with recursive feature elimination (RFE) (A-GA-RFE) feature selection algorithms was utilized to detect important information from a high-dimensional gene expression malaria vector RNA-seq dataset. Support Vector Machine (SVM) kernels were used as the classification algorithms to evaluate its predictive performances. The feasibility of this study was confirmed by using an RNA-seq dataset from the mosquito Anopheles gambiae. The technique results in related performance had 98.3 and 96.7 % accuracy rates, respectively. HIGHLIGHTS Dimensionality reduction method based of feature selection Classification using Support vector machine Classification of malaria vector dataset using an adaptive GA-RFE-SVM GRAPHICAL ABSTRACT


2012 ◽  
Vol 2012 ◽  
pp. 1-12 ◽  
Author(s):  
Chen-An Tsai ◽  
Chien-Hsun Huang ◽  
Ching-Wei Chang ◽  
Chun-Houh Chen

The development of DNA microarray makes researchers screen thousands of genes simultaneously and it also helps determine high- and low-expression level genes in normal and disease tissues. Selecting relevant genes for cancer classification is an important issue. Most of the gene selection methods use univariate ranking criteria and arbitrarily choose a threshold to choose genes. However, the parameter setting may not be compatible to the selected classification algorithms. In this paper, we propose a new gene selection method (SVM-t) based on the use oft-statistics embedded in support vector machine. We compared the performance to two similar SVM-based methods: SVM recursive feature elimination (SVMRFE) and recursive support vector machine (RSVM). The three methods were compared based on extensive simulation experiments and analyses of two published microarray datasets. In the simulation experiments, we found that the proposed method is more robust in selecting informative genes than SVMRFE and RSVM and capable to attain good classification performance when the variations of informative and noninformative genes are different. In the analysis of two microarray datasets, the proposed method yields better performance in identifying fewer genes with good prediction accuracy, compared to SVMRFE and RSVM.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Li Li ◽  
Hongmei Chen ◽  
Chang Liu ◽  
Fang Wang ◽  
Fangfang Zhang ◽  
...  

Microarray data are high dimension with high noise ratio and relatively small sample size, which makes it a challenge to use microarray data to identify candidate disease genes. Here, we have presented a hybrid method that combines estimation of distribution algorithm with support vector machine for selection of key feature genes. We have benchmarked the method using the microarray data of both diffuse B cell lymphoma and colon cancer to demonstrate its performance for identifying key features from the profile data of high-dimension gene expression. The method was compared with a probabilistic model based on genetic algorithm and another hybrid method based on both genetics algorithm and support vector machine. The results showed that the proposed method provides new computational strategy for hunting candidate disease genes from the profile data of disease gene expression. The selected candidate disease genes may help to improve the diagnosis and treatment for diseases.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Ying Zhang ◽  
Qingchun Deng ◽  
Wenbin Liang ◽  
Xianchun Zou

The application of gene expression data to the diagnosis and classification of cancer has become a hot issue in the field of cancer classification. Gene expression data usually contains a large number of tumor-free data and has the characteristics of high dimensions. In order to select determinant genes related to breast cancer from the initial gene expression data, we propose a new feature selection method, namely, support vector machine based on recursive feature elimination and parameter optimization (SVM-RFE-PO). The grid search (GS) algorithm, the particle swarm optimization (PSO) algorithm, and the genetic algorithm (GA) are applied to search the optimal parameters in the feature selection process. Herein, the new feature selection method contains three kinds of algorithms: support vector machine based on recursive feature elimination and grid search (SVM-RFE-GS), support vector machine based on recursive feature elimination and particle swarm optimization (SVM-RFE-PSO), and support vector machine based on recursive feature elimination and genetic algorithm (SVM-RFE-GA). Then the selected optimal feature subsets are used to train the SVM classifier for cancer classification. We also use random forest feature selection (RFFS), random forest feature selection and grid search (RFFS-GS), and minimal redundancy maximal relevance (mRMR) algorithm as feature selection methods to compare the effects of the SVM-RFE-PO algorithm. The results showed that the feature subset obtained by feature selection using SVM-RFE-PSO algorithm results has a better prediction performance of Area Under Curve (AUC) in the testing data set. This algorithm not only is time-saving, but also is capable of extracting more representative and useful genes.


2016 ◽  
Vol 24 (1) ◽  
pp. 54-65 ◽  
Author(s):  
Stefano Parodi ◽  
Chiara Manneschi ◽  
Damiano Verda ◽  
Enrico Ferrari ◽  
Marco Muselli

This study evaluates the performance of a set of machine learning techniques in predicting the prognosis of Hodgkin’s lymphoma using clinical factors and gene expression data. Analysed samples from 130 Hodgkin’s lymphoma patients included a small set of clinical variables and more than 54,000 gene features. Machine learning classifiers included three black-box algorithms ( k-nearest neighbour, Artificial Neural Network, and Support Vector Machine) and two methods based on intelligible rules (Decision Tree and the innovative Logic Learning Machine method). Support Vector Machine clearly outperformed any of the other methods. Among the two rule-based algorithms, Logic Learning Machine performed better and identified a set of simple intelligible rules based on a combination of clinical variables and gene expressions. Decision Tree identified a non-coding gene ( XIST) involved in the early phases of X chromosome inactivation that was overexpressed in females and in non-relapsed patients. XIST expression might be responsible for the better prognosis of female Hodgkin’s lymphoma patients.


Sign in / Sign up

Export Citation Format

Share Document