Classification of EEG-P300 signals using Fisher's linear discriminant analysis

Author(s):  
Arjon Turnip ◽  
Augie Widyotriatmo ◽  
Suprijanto
2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
C. V. K. Kandala ◽  
K. N. Govindarajan ◽  
N. Puppala ◽  
V. Settaluri ◽  
R. S. Reddy

Fisher’s linear discriminant (FLD) models for wheat variety classification were developed and validated. The inputs to the FLD models were the capacitance (C), impedance (Z), and phase angle (θ), measured at two frequencies. Classification of wheat varieties was obtained as output of the FLD models.Zandθof a parallel-plate capacitance system, holding the wheat samples, were measured using an impedance meter, and theCvalue was computed. The best model developed classified the wheat varieties, with accuracy of 95.4%, over the six wheat varieties tested. This method is simple, rapid, and nondestructive and would be useful for the breeders and the peanut industry.


2017 ◽  
Author(s):  
Gokmen Zararsiz ◽  
Dinçer Göksülük ◽  
Selçuk Korkmaz ◽  
Vahap Eldem ◽  
Gözde Ertürk Zararsız ◽  
...  

RNA sequencing (RNA-Seq) is a powerful technique for thegene-expression profiling of organisms that uses the capabilities of next-generation sequencing technologies.Developing gene-expression-based classification algorithms is an emerging powerful method for diagnosis, disease classification and monitoring at molecular level, as well as providing potential markers of diseases. Most of the statistical methods proposed for the classification of geneexpression data are either based on a continuous scale (eg. microarray data) or require a normal distribution assumption. Hence, these methods cannot be directly applied to RNA-Seq data since they violate both data structure and distributional assumptions. However, it is possible to apply these algorithms with appropriate modifications to RNA-Seq data. One way is to develop count-based classifiers, such as Poisson linear discriminant analysis and negative binomial linear discriminant analysis. Another way is to bring the data hierarchically closer to microarrays and apply microarray-based classifiers.In this study, we compared several classifiers including PLDA with and without power transformation, NBLDA, single SVM, bagging SVM (bagSVM), classification and regression trees (CART), and random forests (RF). We also examined the effect of several parameters such asoverdispersion, sample size, number of genes, number of classes, differential-expression rate, andthe transformation method on model performances.A comprehensive simulation study is conducted and the results are compared with the results of two miRNA and two mRNA experimental datasets. The results revealed that increasing the sample size, differential-expression rate, and number of genes and decreasing the dispersion parameter and number of groups lead to an increase in classification accuracy. Similar with differential-expression studies, the classification of RNA-Seq data requires careful attention when handling data overdispersion. We conclude that, as a count-based classifier, the power transformed PLDA and, as a microarray-based classifier, vst or rlog transformed RF and SVM clas sifiers may be a good choice for classification. An R/BIOCONDUCTOR package, MLSeq, is freely available at https://www.bioconductor.org/packages/release/bioc/html/MLSeq.html .


Author(s):  
Ramia Z. Al Bakain ◽  
Yahya S. Al-Degs ◽  
James V. Cizdziel ◽  
Mahmoud A. Elsohly

AbstractFifty four domestically produced cannabis samples obtained from different USA states were quantitatively assayed by GC–FID to detect 22 active components: 15 terpenoids and 7 cannabinoids. The profiles of the selected compounds were used as inputs for samples grouping to their geographical origins and for building a geographical prediction model using Linear Discriminant Analysis. The proposed sample extraction and chromatographic separation was satisfactory to select 22 active ingredients with a wide analytical range between 5.0 and 1,000 µg/mL. Analysis of GC-profiles by Principle Component Analysis retained three significant variables for grouping job (Δ9-THC, CBN, and CBC) and the modest discrimination of samples based on their geographical origin was reported. PCA was able to separate many samples of Oregon and Vermont while a mixed classification was observed for the rest of samples. By using LDA as a supervised classification method, excellent separation of cannabis samples was attained leading to a classification of new samples not being included in the model. Using two principal components and LDA with GC–FID profiles correctly predict the geographical of 100% Washington cannabis, 86% of both Oregon and Vermont samples, and finally, 71% of Ohio samples.


Sign in / Sign up

Export Citation Format

Share Document