Classification of Breast Cancer versus Normal Samples from Mass Spectrometry Profiles Using Linear Discriminant Analysis of Important Features Selected by Random Forest

Author(s):  
Somnath Datta
2008 ◽  
Vol 22 (22) ◽  
pp. 3667-3672 ◽  
Author(s):  
Miriam Beneito-Cambra ◽  
José Manuel Herrero-Martínez ◽  
Ernesto F. Simó-Alfonso ◽  
Guillermo Ramis-Ramos

2007 ◽  
Vol 3 ◽  
pp. 117693510700300 ◽  
Author(s):  
Nadège Dossat ◽  
Alain Mangé ◽  
Jérôme Solassol ◽  
William Jacot ◽  
Ludovic Lhermitte ◽  
...  

A key challenge in clinical proteomics of cancer is the identification of biomarkers that could allow detection, diagnosis and prognosis of the diseases. Recent advances in mass spectrometry and proteomic instrumentations offer unique chance to rapidly identify these markers. These advances pose considerable challenges, similar to those created by microarray-based investigation, for the discovery of pattern of markers from high-dimensional data, specific to each pathologic state (e.g. normal vs cancer). We propose a three-step strategy to select important markers from high-dimensional mass spectrometry data using surface enhanced laser desorption/ionization (SELDI) technology. The first two steps are the selection of the most discriminating biomarkers with a construction of different classifiers. Finally, we compare and validate their performance and robustness using different supervised classification methods such as Support Vector Machine, Linear Discriminant Analysis, Quadratic Discriminant Analysis, Neural Networks, Classification Trees and Boosting Trees. We show that the proposed method is suitable for analysing high-throughput proteomics data and that the combination of logistic regression and Linear Discriminant Analysis outperform other methods tested.


2017 ◽  
Author(s):  
Gokmen Zararsiz ◽  
Dinçer Göksülük ◽  
Selçuk Korkmaz ◽  
Vahap Eldem ◽  
Gözde Ertürk Zararsız ◽  
...  

RNA sequencing (RNA-Seq) is a powerful technique for thegene-expression profiling of organisms that uses the capabilities of next-generation sequencing technologies.Developing gene-expression-based classification algorithms is an emerging powerful method for diagnosis, disease classification and monitoring at molecular level, as well as providing potential markers of diseases. Most of the statistical methods proposed for the classification of geneexpression data are either based on a continuous scale (eg. microarray data) or require a normal distribution assumption. Hence, these methods cannot be directly applied to RNA-Seq data since they violate both data structure and distributional assumptions. However, it is possible to apply these algorithms with appropriate modifications to RNA-Seq data. One way is to develop count-based classifiers, such as Poisson linear discriminant analysis and negative binomial linear discriminant analysis. Another way is to bring the data hierarchically closer to microarrays and apply microarray-based classifiers.In this study, we compared several classifiers including PLDA with and without power transformation, NBLDA, single SVM, bagging SVM (bagSVM), classification and regression trees (CART), and random forests (RF). We also examined the effect of several parameters such asoverdispersion, sample size, number of genes, number of classes, differential-expression rate, andthe transformation method on model performances.A comprehensive simulation study is conducted and the results are compared with the results of two miRNA and two mRNA experimental datasets. The results revealed that increasing the sample size, differential-expression rate, and number of genes and decreasing the dispersion parameter and number of groups lead to an increase in classification accuracy. Similar with differential-expression studies, the classification of RNA-Seq data requires careful attention when handling data overdispersion. We conclude that, as a count-based classifier, the power transformed PLDA and, as a microarray-based classifier, vst or rlog transformed RF and SVM clas sifiers may be a good choice for classification. An R/BIOCONDUCTOR package, MLSeq, is freely available at https://www.bioconductor.org/packages/release/bioc/html/MLSeq.html .


Sign in / Sign up

Export Citation Format

Share Document