Wind Turbine Pitch Predictive Control for Smoothing Power Generation

Author(s):  
Abraham Pastor ◽  
Nathalie Risso ◽  
Jaime Rohten ◽  
Fabricio Salgado
Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2319
Author(s):  
Hyun-Goo Kim ◽  
Jin-Young Kim

This study analyzed the performance decline of wind turbine with age using the SCADA (Supervisory Control And Data Acquisition) data and the short-term in situ LiDAR (Light Detection and Ranging) measurements taken at the Shinan wind farm located on the coast of Bigeumdo Island in the southwestern sea of South Korea. Existing methods have generally attempted to estimate performance aging through long-term trend analysis of a normalized capacity factor in which wind speed variability is calibrated. However, this study proposes a new method using SCADA data for wind farms whose total operation period is short (less than a decade). That is, the trend of power output deficit between predicted and actual power generation was analyzed in order to estimate performance aging, wherein a theoretically predicted level of power generation was calculated by substituting a free stream wind speed projecting to a wind turbine into its power curve. To calibrate a distorted wind speed measurement in a nacelle anemometer caused by the wake effect resulting from the rotation of wind-turbine blades and the shape of the nacelle, the free stream wind speed was measured using LiDAR remote sensing as the reference data; and the nacelle transfer function, which converts nacelle wind speed into free stream wind speed, was derived. A four-year analysis of the Shinan wind farm showed that the rate of performance aging of the wind turbines was estimated to be −0.52%p/year.


2021 ◽  
pp. 0309524X2110227
Author(s):  
Kyle O Roberts ◽  
Nawaz Mahomed

Wind turbine selection and optimal hub height positioning are crucial elements of wind power projects. However, in higher class wind speeds especially, over-exposure of wind turbines can lead to a reduction in power generation capacity. In this study, wind measurements from a met mast were validated according to specifications issued by IRENA and NREL. As a first step, it is shown that commercial WTGs from a database may be matched to the wind class and turbulence intensity. Secondly, a wind turbine selection algorithm, based on maximisation of capacity factor, was implemented across the range of WTGs. The selected WTGs were further exposed to an iterative algorithm using pointwise air density and wind shear coefficients. It is shown that a unique maximum capacity factor, and hence wind power generation, exists for a wind turbine, premised on its eventual over-exposure to the wind resource above a certain hub height.


2013 ◽  
Vol 2 (2) ◽  
pp. 69-74 ◽  
Author(s):  
A.K. Rajeevan ◽  
P.V. Shouri ◽  
Usha Nair

A wind turbine generator output at a specific site depends on many factors, particularly cut- in, rated and cut-out wind speed parameters. Hence power output varies from turbine to turbine. The objective of this paper is to develop a mathematical relationship between reliability and wind power generation. The analytical computation of monthly wind power is obtained from weibull statistical model using cubic mean cube root of wind speed. Reliability calculation is based on failure probability analysis. There are many different types of wind turbinescommercially available in the market. From reliability point of view, to get optimum reliability in power generation, it is desirable to select a wind turbine generator which is best suited for a site. The mathematical relationship developed in this paper can be used for site-matching turbine selection in reliability point of view.


2021 ◽  
Author(s):  
Soukaina Bougdour ◽  
Rime Elhouti ◽  
Selma Sefriti ◽  
Ismail Boumhidi

Author(s):  
Andarini Asri ◽  
Marwan ◽  
Musfirah Putri Lukman ◽  
Kurniawati Naim ◽  
Muh.Imran Bachtiar ◽  
...  

2013 ◽  
Vol 284-287 ◽  
pp. 518-522
Author(s):  
Hua Wei Chi ◽  
Pey Shey Wu ◽  
Kami Ru Chen ◽  
Yue Hua Jhuo ◽  
Hung Yun Wu

A wind-power generation system uses wind turbine blades to convert the kinetic energy of wind to drive a generator which in turn yields electricity, the aerodynamic performance of the wind turbine blades has decisive effect on the cost benefit of the whole system. The aerodynamic analysis and the optimization of design parameters for the wind turbine blades are key techniques in the early stage of the development of a wind-power generation system. It influences the size selection of connecting mechanisms and the specification of parts in the design steps that follows. A computational procedure and method for aerodynamics optimization was established in this study for three-dimensional blades and the rotor design of a wind turbine. The procedure was applied to improving a previously studied 25kW wind turbine rotor design. Results show that the aerodynamic performance of the new three-dimensional blades has remarkable improvement after optimization.


2019 ◽  
Vol 119 (3) ◽  
pp. 521-546 ◽  
Author(s):  
Lingcheng Kong ◽  
Ling Liang ◽  
Jianhong Xu ◽  
Weisi Zhang ◽  
Weijun Zhu

Purpose Although the wind power industry has been booming in China during the last decade, the development of wind turbine aftermarket service is still lagging behind, which seriously affects the operational efficiency of wind farms. If wind turbine manufacturers get involved in the aftermarket, the service pricing policy will impact the profits of both the manufacturer and the wind farm. Therefore, it is necessary to discuss an optimal service pricing strategy in the wind turbine aftermarket and design a method to improve electricity generation efficiency through service contract design. The paper aims to discuss these issues. Design/methodology/approach In order to decide the maintenance quantity and channel effort level, the authors design a normal Stackelberg game and an efficiency value-added revenue-sharing contract and discuss two kinds of revenue increment sharing models under situations, in which the supply chain’s leaders are the wind farm and the wind turbine manufacturer, respectively. Findings The results show that in either case, there exist optimal power generation revenue-sharing ratios that can maximize profit. At the same time, the authors outline an optimal service pricing policy, maintenance demand policy and channel service effort-level policy. The results summarize the influences of wind aftermarket services on wind farms’ and wind turbine manufacturers’ profit, which provides managerial insights into the process of manufacturing servitization. Practical implications The manufacturer’s channel effort level will influence the power generation increments very much, so the authors have developed a mechanism to stimulate the manufacturer improving the efficiency of aftermarket services. Originality/value Taking the power generation increment revenue as the profit increment function, the authors discuss the influence of service price on the profit increment of the wind farm and the wind turbine manufacturer and also consider the influence of service price on the wind farms maintenance quantity and wind turbine manufacturers channel effort level.


Sign in / Sign up

Export Citation Format

Share Document