Comparative Analysis of Neural Network and Machine Learning Techniques for Air Quality Prediction

Author(s):  
Ansa Jovel Kunnathettu ◽  
Satishkumar L. Varma

Generally, Air pollution alludes to the issue of toxins into the air that are harmful to human well being and the entire planet. It can be described as one of the most dangerous threats that the humanity ever faced. It causes damage to animals, crops, forests etc. To prevent this problem in transport sectors have to predict air quality from pollutants using machine learning techniques. Subsequently, air quality assessment and prediction has turned into a significant research zone. The aim is to investigate machine learning based techniques for air quality prediction. The air quality dataset is preprocessed with respect to univariate analysis, bi-variate and multi-variate analysis, missing value treatments, data validation, data cleaning/preparing. Then, air quality is predicted using supervised machine learning techniques like Logistic Regression, Random Forest, K-Nearest Neighbors, Decision Tree and Support Vector Machines. The performance of various machine learning algorithms is compared with respect to Precision, Recall and F1 Score. It is found that Decision Tree algorithm works well for predicting air quality. This application can help the meteorological Department in predicting air quality. In future, this work can be optimized by applying Artificial Intelligence techniques.


IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 128325-128338 ◽  
Author(s):  
Saba Ameer ◽  
Munam Ali Shah ◽  
Abid Khan ◽  
Houbing Song ◽  
Carsten Maple ◽  
...  

Author(s):  
Darielson Souza ◽  
Josias Batista ◽  
Laurinda Reis ◽  
Antonio De Souza Junior

Applications of robotics have been steadily expanding in recent years, and robotics is evolving every day. Currently, robotics is seen as an important area in many applications. Robotics and computational intelligence are increasingly working in parallel with the goal of better performance and productivity. This work has the objective of making an modeling of a robotic arm with three phase induction motor through machine learning techniques to obtain a better model that represents the plant. The techniques used were Articial Neural Network (ANNs): MLP and ELM. The techniques obtained a good performance, and they were evaluated through the multi-correlation coecient for a comparative analysis.


2021 ◽  
Vol 10 (02) ◽  
pp. 07-11
Author(s):  
Kanakaveti Narasimha Dheeraj ◽  
Goutham. R. J ◽  
Arthi. L

Agriculture is said to be the backbone of the economy. Farmers toil hard with different kinds of crops to make good and healthy food for the country. There are more existing systems but uses outdated machine-learning techniques based on RNN( Recurrent neural network) which makes the process slower and more time-consuming. Here We are proposing a new CNN(Convolutional neural network ) based system which is fast and gives accurate results within seconds. CNN is power-efficient and is more suitable for real-time implementation. In this project, we use CNN algorithms which is very much better than the RNN algorithms used in the existing system.More parameters will be taken for the consideration of prediction in the proposed system. And we use Random Forest Regression, Multiple Linear Regression


Author(s):  
Ritu Khandelwal ◽  
Hemlata Goyal ◽  
Rajveer Singh Shekhawat

Introduction: Machine learning is an intelligent technology that works as a bridge between businesses and data science. With the involvement of data science, the business goal focuses on findings to get valuable insights on available data. The large part of Indian Cinema is Bollywood which is a multi-million dollar industry. This paper attempts to predict whether the upcoming Bollywood Movie would be Blockbuster, Superhit, Hit, Average or Flop. For this Machine Learning techniques (classification and prediction) will be applied. To make classifier or prediction model first step is the learning stage in which we need to give the training data set to train the model by applying some technique or algorithm and after that different rules are generated which helps to make a model and predict future trends in different types of organizations. Methods: All the techniques related to classification and Prediction such as Support Vector Machine(SVM), Random Forest, Decision Tree, Naïve Bayes, Logistic Regression, Adaboost, and KNN will be applied and try to find out efficient and effective results. All these functionalities can be applied with GUI Based workflows available with various categories such as data, Visualize, Model, and Evaluate. Result: To make classifier or prediction model first step is learning stage in which we need to give the training data set to train the model by applying some technique or algorithm and after that different rules are generated which helps to make a model and predict future trends in different types of organizations Conclusion: This paper focuses on Comparative Analysis that would be performed based on different parameters such as Accuracy, Confusion Matrix to identify the best possible model for predicting the movie Success. By using Advertisement Propaganda, they can plan for the best time to release the movie according to the predicted success rate to gain higher benefits. Discussion: Data Mining is the process of discovering different patterns from large data sets and from that various relationships are also discovered to solve various problems that come in business and helps to predict the forthcoming trends. This Prediction can help Production Houses for Advertisement Propaganda and also they can plan their costs and by assuring these factors they can make the movie more profitable.


Vibration ◽  
2021 ◽  
Vol 4 (2) ◽  
pp. 341-356
Author(s):  
Jessada Sresakoolchai ◽  
Sakdirat Kaewunruen

Various techniques have been developed to detect railway defects. One of the popular techniques is machine learning. This unprecedented study applies deep learning, which is a branch of machine learning techniques, to detect and evaluate the severity of rail combined defects. The combined defects in the study are settlement and dipped joint. Features used to detect and evaluate the severity of combined defects are axle box accelerations simulated using a verified rolling stock dynamic behavior simulation called D-Track. A total of 1650 simulations are run to generate numerical data. Deep learning techniques used in the study are deep neural network (DNN), convolutional neural network (CNN), and recurrent neural network (RNN). Simulated data are used in two ways: simplified data and raw data. Simplified data are used to develop the DNN model, while raw data are used to develop the CNN and RNN model. For simplified data, features are extracted from raw data, which are the weight of rolling stock, the speed of rolling stock, and three peak and bottom accelerations from two wheels of rolling stock. In total, there are 14 features used as simplified data for developing the DNN model. For raw data, time-domain accelerations are used directly to develop the CNN and RNN models without processing and data extraction. Hyperparameter tuning is performed to ensure that the performance of each model is optimized. Grid search is used for performing hyperparameter tuning. To detect the combined defects, the study proposes two approaches. The first approach uses one model to detect settlement and dipped joint, and the second approach uses two models to detect settlement and dipped joint separately. The results show that the CNN models of both approaches provide the same accuracy of 99%, so one model is good enough to detect settlement and dipped joint. To evaluate the severity of the combined defects, the study applies classification and regression concepts. Classification is used to evaluate the severity by categorizing defects into light, medium, and severe classes, and regression is used to estimate the size of defects. From the study, the CNN model is suitable for evaluating dipped joint severity with an accuracy of 84% and mean absolute error (MAE) of 1.25 mm, and the RNN model is suitable for evaluating settlement severity with an accuracy of 99% and mean absolute error (MAE) of 1.58 mm.


Sign in / Sign up

Export Citation Format

Share Document