Effective Prediction of Heart Disease Using Data Mining and Machine Learning: A Review

Author(s):  
Simran Verma ◽  
Abhishek Gupta
Author(s):  
Sarangam Kodati ◽  
Jeeva Selvaraj

Data mining is the most famous knowledge extraction approach for knowledge discovery from data (KDD). Machine learning is used to enable a program to analyze data, recognize correlations, and make usage on insights to solve issues and/or enrich data and because of prediction. The chapter highlights the need for more research within the usage of robust data mining methods in imitation of help healthcare specialists between the diagnosis regarding heart diseases and other debilitating disease conditions. Heart disease is the primary reason of death of people in the world. Nearly 47% of death is caused by heart disease. The authors use algorithms including random forest, naïve Bayes, support vector machine to analyze heart disease. Accuracy on the prediction stage is high when using a greater number of attributes. The goal is to function predictive evaluation using data mining, using data mining to analyze heart disease, and show which methods are effective and efficient.


2021 ◽  
Vol 1088 (1) ◽  
pp. 012035
Author(s):  
Mulyawan ◽  
Agus Bahtiar ◽  
Githera Dwilestari ◽  
Fadhil Muhammad Basysyar ◽  
Nana Suarna

2021 ◽  
Vol 1913 (1) ◽  
pp. 012099
Author(s):  
R Fadnavis ◽  
K Dhore ◽  
D Gupta ◽  
J Waghmare ◽  
D Kosankar

Author(s):  
T R Stella Mary ◽  
Shoney Sebastian

<span>Data mining can be defined as a process of extracting unknown, verifiable and possibly helpful data from information. Among the various ailments, heart ailment is one of the primary reason behind death of individuals around the globe, hence in order to curb this, a detailed analysis is done using Data Mining. Many a times we limit ourselves with minimal attributes that are required to predict a patient with heart disease. By doing so we are missing on a lot of important attributes that are main causes for heart diseases. Hence, this research aims at considering almost all the important features affecting heart disease and performs the analysis step by step with minimal to maximum set of attributes using Data Mining techniques to predict heart ailments. The various classification methods used are Naïve Bayes classifier, Random Forest and Random Tree which are applied on three datasets with different number of attributes but with a common class label. From the analysis performed, it shows that there is a gradual increase in prediction accuracies with the increase in the attributes irrespective of the classifiers used and Naïve Bayes and Random Forest algorithms comparatively outperforms with these sets of data.</span>


Sign in / Sign up

Export Citation Format

Share Document