Characteristic analysis of journal bearing under thin film lubrication—Layered Viscosity Model

Author(s):  
Qingwen Qu ◽  
Xiaoqing Hu ◽  
Xiao Liu ◽  
Lixia Meng
2002 ◽  
Vol 35 (7) ◽  
pp. 459-465 ◽  
Author(s):  
Qu Quingwen ◽  
Wang Mei ◽  
Wang Lihua ◽  
Chai Shan

Author(s):  
A. Martini ◽  
Y. Liu ◽  
R. Q. Snurr ◽  
Q. Wang

We present a simulation approach for thin film lubrication that integrates a molecular model of the film thickness-viscosity relationship in thin films with a continuum elastohydrodynamic (EHL) lubricated contact solution. Molecular simulation is used to characterize the effect of film thickness on viscosity in terms of solidification, shear thinning, and oscillation. This relationship is then incorporated into a traditional, continuum EHL solution. Film thickness distributions predicted by this integrated model are evaluated. It is found that the effect of the molecular film thickness-viscosity model is small compared to the increase in viscosity with pressure predicted by the Barus equation.


2002 ◽  
Vol 124 (3) ◽  
pp. 547-552 ◽  
Author(s):  
Ping Huang ◽  
Zhi-heng Li ◽  
Yong-gang Meng ◽  
Shi-zhu Wen

The basic lubrication equations are deduced from the original second-order fluid constitutive equations. Two examples of lubrication, a plane inclined slider and a journal bearing, are calculated respectively. The Reynolds boundary conditions are used in the calculation of the journal bearing. In this calculation, it is found that the load carrying capacities of the slider and the journal bearing are of different tendencies with the increase of the Deborah number. Furthermore, the results show that with the decrease of the film thickness, the increase of the normal stress of second-order fluid is greater than that of Newtonian fluid. Finally, it is found that the distribution of the normal stress changes significantly at a certain thickness.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Sandeep Soni ◽  
D. P. Vakharia

The steady state performance analysis of short circular journal bearing is conducted using the viscosity correction model under thin film lubrication conditions. The thickness of adsorbed molecular layers is the most critical factor in studying thin film lubrication, and is the most essential parameter that distinguishes thin film from thick film lubrication analysis. The interaction between the lubricant and the surface within a very narrow gap has been considered. The general Reynolds equation has been derived for calculating thin film lubrication parameters affecting the performance of short circular journal bearing. Investigation for the load carrying capacity, friction force, torque, and power loss for the short circular journal bearing under the consideration of adsorbed layer thickness (2δ) has been carried out. The analysis is carried out for the short bearing approximation (L/D=0.5) using Gumbel’s boundary condition. It has been found that the steady state performance parameters are comparatively higher for short circular journal bearing under the consideration of adsorbed layer thickness than for plain circular journal bearing. The load carrying capability of adsorbed layer thickness considered bearing is observed to be high for the specified operating conditions. This work could promote the understanding and research for the mechanism of the nanoscale thin film lubrication.


2001 ◽  
Vol 34 (8) ◽  
pp. 517-521 ◽  
Author(s):  
Qu Qingwen ◽  
Wang Mei ◽  
Chai Shan ◽  
Yao Fusheng

Friction ◽  
2021 ◽  
Author(s):  
Thi D. Ta ◽  
Hien D. Ta ◽  
Kiet A. Tieu ◽  
Bach H. Tran

AbstractThe rapid development of molecular dynamics (MD) simulations, as well as classical and reactive atomic potentials, has enabled tribologists to gain new insights into lubrication performance at the fundamental level. However, the impact of adopted potentials on the rheological properties and tribological performance of hydrocarbons has not been researched adequately. This extensive study analyzed the effects of surface structure, applied load, and force field (FF) on the thin film lubrication of hexadecane. The lubricant film became more solid-like as the applied load increased. In particular, with increasing applied load, there was an increase in the velocity slip, shear viscosity, and friction. The degree of ordering structure also changed with the applied load but rather insignificantly. It was also significantly dependent on the surface structure. The chosen FFs significantly influenced the lubrication performance, rheological properties, and molecular structure. The adaptive intermolecular reactive empirical bond order (AIREBO) potential resulted in more significant liquid-like behaviors, and the smallest velocity slip, degree of ordering structure, and shear stress were compared using the optimized potential for liquid simulations of united atoms (OPLS-UAs), condensed-phase optimized molecular potential for atomic simulation studies (COMPASS), and ReaxFF. Generally, classical potentials, such as OPLS-UA and COMPASS, exhibit more solid-like behavior than reactive potentials do. Furthermore, owing to the solid-like behavior, the lubricant temperatures obtained from OPLS-UA and COMPASS were much lower than those obtained from AIREBO and ReaxFF. The increase in shear stress, as well as the decrease in velocity slip with an increase in the surface potential parameter ζ, remained conserved for all chosen FFs, thus indicating that the proposed surface potential parameter ζ for the COMPASS FF can be verified for a wide range of atomic models.


1965 ◽  
Vol 87 (3) ◽  
pp. 735-739 ◽  
Author(s):  
Y. Tamai ◽  
B. G. Rightmire

Experimental work was carried out on the boundary lubrication of a copper-copper couple with pure cetane, palmitic acid solution of cetane, and some other organic materials. The purpose was to get information about α and μlube, which appear in the friction equation: μ=αμsolid+(1−α)μlube, by using two different kinds of copper surface, a clean surface, and an oxidized surface. α was found to be small with palmitic acid solution, and the estimated shear strength of palmitic acid was high under the examined condition. α and μlube seemed to be properties which are independent of each other. α is closely related to the attraction force between the lubricant and the substrate, whereas μlube is related to the complexity of molecular structure of the lubricant. A comparison was made of bulk-liquid and thin-film lubrication. μlube was smaller in thin-film lubrication than it was in bulk-liquid lubrication. This suggests that the frictional resistance may be partly contributed by liquid in the edge space around the real contact.


Sign in / Sign up

Export Citation Format

Share Document