Accelerated spatio-temporal wavelet transforms: an iterative trajectory estimation

Author(s):  
J.-P. Leduc ◽  
J. Corbett ◽  
Mingqi Kong ◽  
V. Wickerhauser ◽  
B. Ghosh
Author(s):  
ARUN SHARMA ◽  
DINESH K. KUMAR ◽  
SANJAY KUMAR ◽  
NEIL McLACHLAN

This paper evaluates the efficacy of directional information of wavelet multi-resolution decomposition to enhance histogram-based classification of human gestures. The gestures are represented by spatio-temporal templates. This template collapses spatial and temporal components of motion into a static gray scale image such that no explicit sequence matching or temporal analysis is required, and it reduces the dimensionality to represent motion. These templates are modified to be invariant to translation and scale. Two-dimensional, 3-level dyadic wavelet transforms have been applied on the template resulting in one lowpass sub-image and nine highpass directional sub-images. Histograms of wavelet coefficients at different scales are used for classification purposes. The experiments demonstrate that while the statistical properties of the template provide high level of classification accuracy, the global detail activity available in highpass decompositions significantly improve the classification accuracy.


2021 ◽  
Vol 211 ◽  
pp. 106528
Author(s):  
Jinjing Gu ◽  
Zhibin Jiang ◽  
Yanshuo Sun ◽  
Min Zhou ◽  
Shenmeihui Liao ◽  
...  

2005 ◽  
Vol 41 ◽  
pp. 15-30 ◽  
Author(s):  
Helen C. Ardley ◽  
Philip A. Robinson

The selectivity of the ubiquitin–26 S proteasome system (UPS) for a particular substrate protein relies on the interaction between a ubiquitin-conjugating enzyme (E2, of which a cell contains relatively few) and a ubiquitin–protein ligase (E3, of which there are possibly hundreds). Post-translational modifications of the protein substrate, such as phosphorylation or hydroxylation, are often required prior to its selection. In this way, the precise spatio-temporal targeting and degradation of a given substrate can be achieved. The E3s are a large, diverse group of proteins, characterized by one of several defining motifs. These include a HECT (homologous to E6-associated protein C-terminus), RING (really interesting new gene) or U-box (a modified RING motif without the full complement of Zn2+-binding ligands) domain. Whereas HECT E3s have a direct role in catalysis during ubiquitination, RING and U-box E3s facilitate protein ubiquitination. These latter two E3 types act as adaptor-like molecules. They bring an E2 and a substrate into sufficiently close proximity to promote the substrate's ubiquitination. Although many RING-type E3s, such as MDM2 (murine double minute clone 2 oncoprotein) and c-Cbl, can apparently act alone, others are found as components of much larger multi-protein complexes, such as the anaphase-promoting complex. Taken together, these multifaceted properties and interactions enable E3s to provide a powerful, and specific, mechanism for protein clearance within all cells of eukaryotic organisms. The importance of E3s is highlighted by the number of normal cellular processes they regulate, and the number of diseases associated with their loss of function or inappropriate targeting.


2019 ◽  
Vol 47 (6) ◽  
pp. 1733-1747 ◽  
Author(s):  
Christina Klausen ◽  
Fabian Kaiser ◽  
Birthe Stüven ◽  
Jan N. Hansen ◽  
Dagmar Wachten

The second messenger 3′,5′-cyclic nucleoside adenosine monophosphate (cAMP) plays a key role in signal transduction across prokaryotes and eukaryotes. Cyclic AMP signaling is compartmentalized into microdomains to fulfil specific functions. To define the function of cAMP within these microdomains, signaling needs to be analyzed with spatio-temporal precision. To this end, optogenetic approaches and genetically encoded fluorescent biosensors are particularly well suited. Synthesis and hydrolysis of cAMP can be directly manipulated by photoactivated adenylyl cyclases (PACs) and light-regulated phosphodiesterases (PDEs), respectively. In addition, many biosensors have been designed to spatially and temporarily resolve cAMP dynamics in the cell. This review provides an overview about optogenetic tools and biosensors to shed light on the subcellular organization of cAMP signaling.


Sign in / Sign up

Export Citation Format

Share Document