Identification of brain activity by fractal scaling analysis of functional MRI data

Author(s):  
J.M. Lee ◽  
J. Hu ◽  
J.B. Gao ◽  
K.D. White ◽  
B. Crosson ◽  
...  
NeuroImage ◽  
2008 ◽  
Vol 40 (1) ◽  
pp. 197-212 ◽  
Author(s):  
Jae-Min Lee ◽  
Jing Hu ◽  
Jianbo Gao ◽  
Bruce Crosson ◽  
Kyung K. Peck ◽  
...  

2020 ◽  
Author(s):  
Irena T Schouwenaars ◽  
Miek J de Dreu ◽  
Geert-Jan M Rutten ◽  
Nick F Ramsey ◽  
Johan M Jansma

Abstract Background The main goal of this functional MRI (fMRI) study was to examine whether cognitive deficits in glioma patients prior to treatment are associated with abnormal brain activity in either the central executive network (CEN) or default mode network (DMN). Methods Forty-six glioma patients, and 23 group-matched healthy controls (HCs) participated in this fMRI experiment, performing an N-back task. Additionally, cognitive profiles of patients were evaluated outside the scanner. A region of interest–based analysis was used to compare brain activity in CEN and DMN between groups. Post hoc analyses were performed to evaluate differences between low-grade glioma (LGG) and high-grade glioma (HGG) patients. Results In-scanner performance was lower in glioma patients compared to HCs. Neuropsychological testing indicated cognitive impairment in LGG as well as HGG patients. fMRI results revealed normal CEN activation in glioma patients, whereas patients showed reduced DMN deactivation compared to HCs. Brain activity levels did not differ between LGG and HGG patients. Conclusions Our study suggests that cognitive deficits in glioma patients prior to treatment are associated with reduced responsiveness of the DMN, but not with abnormal CEN activation. These results suggest that cognitive deficits in glioma patients reflect a reduced capacity to achieve a brain state necessary for normal cognitive performance, rather than abnormal functioning of executive brain regions. Solely focusing on increases in brain activity may well be insufficient if we want to understand the underlying brain mechanism of cognitive impairments in patients, as our results indicate the importance of assessing deactivation.


2020 ◽  
Vol 2 (1) ◽  
Author(s):  
Karsten Mueller ◽  
Dušan Urgošík ◽  
Tommaso Ballarini ◽  
Štefan Holiga ◽  
Harald E Möller ◽  
...  

Abstract Levodopa is the first-line treatment for Parkinson’s disease, although the precise mechanisms mediating its efficacy remain elusive. We aimed to elucidate treatment effects of levodopa on brain activity during the execution of fine movements and to compare them with deep brain stimulation of the subthalamic nuclei. We studied 32 patients with Parkinson’s disease using functional MRI during the execution of finger-tapping task, alternating epochs of movement and rest. The task was performed after withdrawal and administration of a single levodopa dose. A subgroup of patients (n = 18) repeated the experiment after electrode implantation with stimulator on and off. Investigating levodopa treatment, we found a significant interaction between both factors of treatment state (off, on) and experimental task (finger tapping, rest) in bilateral putamen, but not in other motor regions. Specifically, during the off state of levodopa medication, activity in the putamen at rest was higher than during tapping. This represents an aberrant activity pattern probably indicating the derangement of basal ganglia network activity due to the lack of dopaminergic input. Levodopa medication reverted this pattern, so that putaminal activity during finger tapping was higher than during rest, as previously described in healthy controls. Within-group comparison with deep brain stimulation underlines the specificity of our findings with levodopa treatment. Indeed, a significant interaction was observed between treatment approach (levodopa, deep brain stimulation) and treatment state (off, on) in bilateral putamen. Our functional MRI study compared for the first time the differential effects of levodopa treatment and deep brain stimulation on brain motor activity. We showed modulatory effects of levodopa on brain activity of the putamen during finger movement execution, which were not observed with deep brain stimulation.


PLoS ONE ◽  
2015 ◽  
Vol 10 (1) ◽  
pp. e0116849 ◽  
Author(s):  
Ye Tu ◽  
Yongxu Wei ◽  
Kun Sun ◽  
Weiguo Zhao ◽  
Buwei Yu

Sign in / Sign up

Export Citation Format

Share Document