Author(s):  
Hao Jiang ◽  
Xinhua Long ◽  
Guang Meng

In this paper, a study on the active control of vibration for peripheral milling is presented. Different from the control for the vibrations of cutting tool or workpiece, in this effort, the relative vibration between the workpiece and tool is selected as the control target. To reduce the relative vibration, a two-axis active work-holding stage, which is droved by two piezo-actuators, is designed and the control system synthesis method is used to determine the control gain. By this method, the dynamical stage is considered as plant while the complicated cutting process is treated as disturbance. The cutting vibration control can be considered as a robust disturbance rejection problem (RDRP), and the controller design is based on robust servo-mechanism method. Without the requirement on the model of disturbance, this method simplifies the vibration control problem and only the knowledge of frequencies of disturbance is required. Numerical results indicate the implemented system works well in cutting vibration cancellation.


2017 ◽  
Vol 28 (18) ◽  
pp. 2603-2616 ◽  
Author(s):  
Asif Khan ◽  
Hyun Sung Lee ◽  
Heung Soo Kim

In this article, the effect of a sensor-debonding failure on the active vibration control of a smart composite plate is investigated numerically. A mathematical model of the smart structure with a partially debonded piezoelectric sensor is developed using an improved layerwise theory, a higher-order electric-potential field that serves as the displacement field, and the potential variation through the piezoelectric patches. A state-space form that is based on the reduced-order model is employed for the controller design. A control strategy with a constant gain and velocity feedback is used to assess the vibration-control characteristics of the controller in the presence of the sensor-debonding failure. The obtained results show that sensor-debonding failure reduces the sensor-output, control-input signal, and active damping in magnitude that successively degrades the vibration attenuation capability of the active vibration controller. The settling time and relative tip displacement of the controlled structure increase with the increasing length of partial debonding between the piezoelectric sensor and host structure. Furthermore, a damage-sensitive feature along with multidimensional scaling showed excellent results for the detection and quantification of sensor-debonding failure in the active vibration control of smart structures.


1993 ◽  
Author(s):  
S. Jagannathan ◽  
A. B. Palazzolo ◽  
A. F. Kascak ◽  
G. T. Montague

A novel frequency-domain technique, having its roots in Quantitative Feedback Theory (QFT), has been developed to design controllers for active vibration control (AVC). The advantages are a plant-based design according to performance specifications, and the ability to include structured uncertainties in the critical plant parameters like passive bearing stiffness or damping. In this paper, we describe the background theory of single-input, single-output (SISO) and multi-input, multi-output (MIMO) QFT design, followed by development of the theory adapted for AVC. Application examples are considered next, outlining the design method for both cases. Simulation results for the systems studied are presented showing the effectiveness of the technique in attenuating vibration.


Author(s):  
Ehsan Omidi ◽  
S. Nima Mahmoodi

This paper discusses the concept of a new methodology for active vibration control of flexible structures using consensus control of network systems. In the new approach, collocated actuation/sensingpatches communicate with one another through a network with certain directed topology. A virtual leader is assigned to enforce the vibration amplitude at the place of each agent to zero. Since the modal states of the system are not available for the vibration control task, individual optimal observers are designed for each agent first. After describing the controller and examining the stability of the system, controller performance is verified using a clamped-clamped thin aluminum beam. According to the obtained numerical results, the new control approach successfully suppresses the vibration amplitudes, while the consensus design ensures that all agents are synchronized during the performance.


2005 ◽  
Vol 475-479 ◽  
pp. 2103-2106 ◽  
Author(s):  
Zhao Qing Song ◽  
Jian Qin Mao ◽  
Chao Li ◽  
Hui Bin Xu ◽  
Cheng Bao Jiang

A heuristic iterative learning control (ILC) design scheme is presented and is applied to the controller design of the active vibration control. A magnetostrictive material actuator is used as experimental equipment for active vibration control in this paper. The merit of the presented ILC scheme is that it is not necessary to build the mathematical model of the magnetostrictive actuator. The experimental result shows that the controller designed is efficient for active vibration control.


Sign in / Sign up

Export Citation Format

Share Document