Design of leakage detection and location system for long range crude oil pipeline

Author(s):  
Yibo Li ◽  
Liying Sun ◽  
Li Kun Wang ◽  
Ling Li Zhang
Author(s):  
Yibo Li ◽  
Liying Sun ◽  
Shijiu Jin ◽  
Likun Wang ◽  
Dongjie Tan

Negative pressure wave (NPWs) technique is an effective method for oil leakage detection and location. However, conventional negative pressure wave technology failed to be applied to leakage location in China directly. China’s crude oil has to be transmitted over heating because of its high viscosity, high wax and high solidifying point. In this paper, conventional location method of instantaneous pressure wave was analyzed and techniques were developed to overcome the defects. Since temperature of the oil would drop continuously during transmission, temperature drop influence on physical characteristics of the crude oil and propagation velocity of pressure wave was studied in detail. In order to achieve high precision, wavelet transform algorithm was adopted to define inflexion of negative pressure wave when it propagates along the pipe, and wavelet threshold denoising technique was used to separate the characteristic inflexion of negative pressure wave when calculating the leak position. The problem of false alarms was solved by application of eigenvector indexes method. On the basis of that, a new oil leakage detection and location system was developed for hot oil transmission pipeline. In China, SCADA (supervisory control and data acquisition) system was installed on most oil transmission pipeline to monitor operational parameters for long range crude oil or product oil pipeline. Because it acquires pipeline operational parameters from the existing SCADA system, the cost and complexity of the new system was greatly reduced. The earliest leak detection and location system which installed on a hot oil transmission pipeline in PetroChina 5 years ago is still working well. It responds to leakage (1.5% of the total fluid) within 2 minutes and location error is less than 2% of the pipeline length between the two stations.


2021 ◽  
Vol 18 (1) ◽  
pp. 145-162
Author(s):  
B Butchibabu ◽  
Prosanta Kumar Khan ◽  
P C Jha

Abstract This study aims for the protection of a crude-oil pipeline, buried at a shallow depth, against a probable environmental hazard and pilferage. Both surface and borehole geophysical techniques such as electrical resistivity tomography (ERT), ground penetrating radar (GPR), surface seismic refraction tomography (SRT), cross-hole seismic tomography (CST) and cross-hole seismic profiling (CSP) were used to map the vulnerable zones. Data were acquired using ERT, GPR and SRT along the pipeline for a length of 750 m, and across the pipeline for a length of 4096 m (over 16 profiles of ERT and SRT with a separation of 50 m) for high-resolution imaging of the near-surface features. Borehole techniques, based on six CSP and three CST, were carried out at potentially vulnerable locations up to a depth of 30 m to complement the surface mapping with high-resolution imaging of deeper features. The ERT results revealed the presence of voids or cavities below the pipeline. A major weak zone was identified at the central part of the study area extending significantly deep into the subsurface. CSP and CST results also confirmed the presence of weak zones below the pipeline. The integrated geophysical investigations helped to detect the old workings and a deformation zone in the overburden. These features near the pipeline produced instability leading to deformation in the overburden, and led to subsidence in close vicinity of the concerned area. The area for imminent subsidence, proposed based on the results of the present comprehensive geophysical investigations, was found critical for the pipeline.


2021 ◽  
Vol 1927 (1) ◽  
pp. 012021
Author(s):  
Junjiang Liu ◽  
Liang Feng ◽  
Dake Yang ◽  
Xianghui Li

2021 ◽  
Vol 205 ◽  
pp. 108881
Author(s):  
Xuedong Gao ◽  
Qiyu Huang ◽  
Xun Zhang ◽  
Yu Zhang ◽  
Xiangrui Zhu ◽  
...  

Author(s):  
Yuanyuan Chen ◽  
Jing Gong ◽  
Xiaoping Li ◽  
Nan Zhang ◽  
Shaojun He ◽  
...  

Pipeline commissioning, which is a key link from engineering construction to production operation, is aim to fill an empty pipe by injecting water or oil to push air out of it. For a large-slope crude oil pipeline with great elevation differences, air is fairly easy to entrap at downward inclined parts. The entrapped air, which is also called air pocket, will cause considerable damage on pumps and pipes. The presence of it may also bring difficulties in tracking the location of the liquid head or the interface between oil and water. It is the accumulated air that needed to be exhausted in time during commissioning. This paper focuses on the simulation of liquid-gas replacement in commissioning process that only liquid flow rate exists while gas stays stagnant in the pipe and is demanded to be replaced by liquid. Few previous researches have been found yet in this area. Consequently, the flow in a V-section pipeline consisted of a downhill segment and a subsequent uphill one is used here for studying both the formation and exhaustion behaviors of the intake air. The existing two-fluid model and simplified non-pressure wave model for gas-liquid stratified flow are applied to performance the gas formation and accumulation. The exhausting process is deemed to be a period in which the elongated bubble (Taylor bubble) is fragmented into dispersed small bubbles. A mathematical model to account for gas entrainment into liquid slug is proposed, implemented and incorporated in a computational procedure. By taking into account the comprehensive effects of liquid flow rate, fluid properties, surface tension, and inclination angle, the characteristics of the air section such as the length, pressure and mass can be calculated accurately. The model was found to show satisfactory predictions when tested in a pipeline. The simulation studies can provide theoretical support and guidance for field engineering application, which are meanwhile capable of helping detect changes in parameters of gas section. Thus corresponding control measures can be adopted timely and appropriately in commissioning process.


Sign in / Sign up

Export Citation Format

Share Document