Development of control algorithm to reduce force ripple for high speed Permanent Magnet Linear Motor( PMLM)

Author(s):  
Kyoung-Chon Kim ◽  
Young-Man Choi ◽  
Jung-jae Kim ◽  
Dae-Gab Gweon
Author(s):  
Rongmin Cao ◽  
Su Zhong ◽  
Shizhen Liu

A composite control method based on the model-free adaptive control is applied to the position or speed control of the linear motor. The model-free adaptive controller (MFAC) broke through the classical PID controller design of linear framework, is a kind of new controller, it' structure is adaptive and a kind of integration of modeling and control method. The composite control method includes an adaptive feedforward compensator which is designed to eliminate or suppress the effects of inherent force ripple for a permanent magnet linear motor (PMLM). Simulation results show that compared with PID control, the proposed composite control algorithm is more effective for the strong coupling of nonlinear system and difficult to realize stable control. And the response performance of the system is realized.


2019 ◽  
Vol 15 (3) ◽  
pp. 1-15 ◽  
Author(s):  
Jamal Abdul-Kareem Mohammed ◽  
Farag Mahel Mohammed ◽  
Raghda'a Ahmed A. Ali

Linear motor offers several features in many applications that require linear motion. Nevertheless, the presence of cogging force can deteriorate the thrust of a permanent magnet linear motor. Using several methodologies, a design of synchronous single sided linear iron-core motor was proposed. According to exact formulas with surface-mounted magnets and concentrated winding specification, which are relying on geometrical parameters. Two-dimensional performance analysis of the designed model and its multi-objective optimization were accomplished as a method to reduce the motor cogging force using MAXWELL ANSYS. The optimum model design results showed that the maximum force ripple was approximatrly reduced by 81.24%compared to the original model with a smaller ripple coefficient of 0.22. Likewise, the model was redesigned taking into consideration two cases; laminated core and solid core. It was found that the error between the analytical and numerical results of the output force did not exceed 0.0967%.


2012 ◽  
Vol 13 (1) ◽  
pp. 132-136 ◽  
Author(s):  
Kyoungchon Kim ◽  
Jungjae Kim ◽  
Young-Man Choi ◽  
Daegab Gweon

2021 ◽  
Vol 13 (4) ◽  
pp. 168781402110087
Author(s):  
Feng Zhou ◽  
Han Zhao ◽  
Xiaoke Liu ◽  
Fujia Wang

Permanent magnet linear motors can cause thrust fluctuation due to cogging and end effects, which will affect the operation stability of the linear motor. In order to solve this problem, a new method of eliminating alveolar force by using phase-shifting and displacement is proposed in this paper. Taking the cylindrical permanent magnet linear motor as an example, the traditional cylindrical permanent magnet linear motor is divided into two unit-motors, and established finite element analysis model of cylindrical permanent magnet linear motor. It is different from other traditional methods, the thrust fluctuation was reduced by both phase-shifting and displacement simultaneously in this paper, and through simulation analysis, it is determined that the thrust fluctuation suppression effect was the best when the cogging distance was shifted by half. Furthermore, a comparative simulation was made on whether the magnetic insulating material was used. The simulation results show that: The method proposed in this paper can effectively suppress the thrust fluctuation of the cylindrical permanent magnet linear motor. And it can be applied to other similar motor designs. Compared with the traditional method of suppressing thrust fluctuation, the mechanical structure and the technological process of suppressing thrust fluctuation used in this method are simpler.


Sign in / Sign up

Export Citation Format

Share Document