Notice of Retraction: Kinematics and dynamics simulation of the Slider-Crank mechanism based on Matlab/Simulink

Author(s):  
Mengsi Liu ◽  
Yi Cao ◽  
Qiuju Zhang ◽  
Hui Zhou
2013 ◽  
Vol 842 ◽  
pp. 347-350 ◽  
Author(s):  
Li Ni ◽  
Ya Yu Huang ◽  
Chong Kai Zhou

Establishing bias and central entity model of slider-crank mechanism in this paper, then the bias model is imported into the ADAMS for kinematics simulation, and we can get the sliders law of motion. Then using ANSYS and ADAMS jointly to establish the multiple rigid body and the coupled model of slider-crank mechanism, and carrying on kinematics and dynamics simulation analysis to compare the two simulation results. Through build simulation of the coupled model with UG, ANSYS and ADAMS, the result of this calculation is better to reflect the true movement of the mechanism.


2012 ◽  
Vol 503-504 ◽  
pp. 731-734
Author(s):  
Xiao Xu Liu ◽  
Min Chen ◽  
Ai Hua Tang

The engine model with 4 cylinders is built by SolidWorks, the kinematics and dynamics simulations of the engine virtual prototype are done by COSMOSMotion, the results of kinematics simulation are checked, there are very small errors between the simulation results and the calculation results according to formulas. The mainly results of dynamics simulation are given. The simulation result consists with the parameters of the engine.


2012 ◽  
Vol 215-216 ◽  
pp. 1081-1084
Author(s):  
Shao Jun Bo ◽  
Kui Ji ◽  
Juan Tian

On the basis of flexible multi-body system dynamics theory, we built flexible multi-body system dynamics models which include a backlash, and to a slider-crank mechanism as the research object, we made a preliminary study on the effect on the flexible components and the backlash of the kinematic pair on mechanical system dynamics characteristics. To consider the backlash of the kinematic pair and component of flexible space can show a preliminary research on the dynamic simulation, and focus on the backlash, friction and gravity field to influence in the dynamic characteristics of the system. The simulation results show that, due to the existence of backlash made the two components frequent collision in the process of the stretching, clearance, flexible and friction are closed, make the system nonlinear characteristics increased.


2021 ◽  
Author(s):  
Mal'donado Val'eho ◽  
Nikolay Chaynov

The textbook discusses the kinematics and dynamics of inline piston internal combustion engines with axial and deaxial crank mechanism. The necessary material for calculating the forces and moments acting in the engine is given, the balancing of engines, the construction of vector diagrams of pressure on the crankshaft bearings are considered, examples of calculations are given. Meets the requirements of the federal state educational standards of higher education of the latest generation. For students of higher educational institutions studying in the field of training "Energy engineering".


Author(s):  
Ian S. Fischer ◽  
Sahidur Rahman

Abstract Dual-number techniques are used to analyze the kinematics and dynamics of the slider crank mechanism generalized to consider the effects of the cylinder axis being offset and non-perpendicular to the crankshaft axis, conditions which result in reciprocating machinery such as engines and compressors from manufacturing tolerances. The kinematics of the mechanism are evaluated with a Newton-Raphson method using dual-number coordinate-transformation matrices which in this work is extended to include mechanisms with spherical joints. Results for various cases are shown and are ready to be used in a study of the dynamics of the generalized slider-crank.


2020 ◽  
Vol 2020 ◽  
pp. 1-17
Author(s):  
Hong Jun Li ◽  
Wei Jiang ◽  
Yu Yan ◽  
An Zhang ◽  
Gan Zuo

In response to the problems of high labor intensity, high risk, and poor reliability of artificial live working, a four-wheel-driven spacer bar replacement mobile operation robot has been designed and developed in this paper, and the corresponding kinematic and dynamics model have been established, based on the established double models, the kinematics and dynamics numerical analysis can be realized through INVENTOR and ADAMS, respectively, based on the established kinematics and dynamics models . The results show that the simulation value of the robot joint displacement, velocity, acceleration, and joint force can be able to meet the requirements of kinematic and dynamic constraints during the robot operation. The robot prototype can meet the requirement of dual-split robot working space and the operation joint force control, which not only extend the robot adaptability to the multisplit lines heterogeneous operation environment but also provide an important theoretical technical support for the exploit of the robot physical prototype. Through the robot kinematics and dynamics analysis, the robot mechanical structure parameters and electrical control parameters have been effectively optimized. The weight and cost of the robot have been reduced by 12% and 15% compared to the existed studies. Finally, the robot principle prototype mobile platform has been developed, and the correctness of robot kinematics and dynamics simulation analysis has been verified through the robot principle prototype mobile platform.


2013 ◽  
Vol 364 ◽  
pp. 107-111 ◽  
Author(s):  
Qiao Xiong ◽  
Han Bin Xiao

This paper proposes a problem of flat dredging because of the phenomenon of overdredging casuing bottom roughness in dredging engineering and presents the formulation of the inverse kinematics and dynamics simulation of a dredging clamshell. A dynamical model of dredging clamshell is built based on Adams and the position analysis is firstly performed by adding a general point motion to the dredging clamshell. By analyzing and solving kinematics equations in inverse, movement curves of the steel wire ropes are obtained, and the pulling force curves are acquired by dynamics simulation. The results show that the method automatically generates inverse dynamic solutions and the movement curves are intuitive and can offer help to the flat dredging control scheme effectively.


2020 ◽  
Vol 3 (2) ◽  
pp. 111
Author(s):  
Ariyano Ariyano ◽  
Amay Suherman ◽  
Handiansyah Akhmadi

This research aims to develop autodesk inventor-based multimedia that was designed to increase students’ generic science skill on the application of relative velocity at kinematics and dynamics courses. This study used the mini course method developed by Borg and Gall, including the stage of analysing and planning, developing early product, and validating from the expert and revision the early product. Based on the analysis conducted, it was revealed that there were five indicators that students had difficulties with, including illustrating kinematic diagram, illustrating velocity direction, calculating absolute velocity, illustrating velocity polygon, and calculating velocity based on velocity polygon. Those five indicators were related to six generic science aspects, including modelling, symbolic language, laws of causality, logical consistency, scale awareness, and observation. The developed multimedia consists of nine displays of slider-crank mechanism and eight displays of four-bar mechanisms, using .idw, .iam, and .mp4 formats and has been validated by material and media experts. Based on the judgment from the experts, the inventor-based multimedia was worthy to be applied in the course.


2013 ◽  
Vol 364 ◽  
pp. 365-369
Author(s):  
Xiao Lin Deng ◽  
Heng Bing Wei

This paper studies and designs the gems feeding manipulator, makes a detailed analysis of the overall structure and working principle of the manipulator, and establishes the three-dimensional model of the manipulator. The virtual prototype model of the manipulator is built in ADAMS software. Use simulation analysis functions of ADAMS to carry out kinematics and dynamics simulation analysis on manipulator, obtaining parameter curves of the manipulator such as position, speed and torque, which verifies it feasible to use manipulator to unload and load gems, achieving the design requirements.


Sign in / Sign up

Export Citation Format

Share Document