Design and Simulation Analysis of the Manipulator Used to Feed Gems

2013 ◽  
Vol 364 ◽  
pp. 365-369
Author(s):  
Xiao Lin Deng ◽  
Heng Bing Wei

This paper studies and designs the gems feeding manipulator, makes a detailed analysis of the overall structure and working principle of the manipulator, and establishes the three-dimensional model of the manipulator. The virtual prototype model of the manipulator is built in ADAMS software. Use simulation analysis functions of ADAMS to carry out kinematics and dynamics simulation analysis on manipulator, obtaining parameter curves of the manipulator such as position, speed and torque, which verifies it feasible to use manipulator to unload and load gems, achieving the design requirements.

2014 ◽  
Vol 940 ◽  
pp. 132-135 ◽  
Author(s):  
Yi Fan Zhao ◽  
Ling Sha ◽  
Yi Zhu

Established the dynamics simulation analysis model of crane hoisting mechanism based on the theory of dynamics in Adams software, and then through the three dimensional model of lifting mechanism dynamics entities, the constraints, load, drive can be added, the motion law can be defined to simulation analysis the change of the force of wire rope, the change of displacement, velocity and acceleration of lifting weight in the lifting process. On the basis of the simulation results, it can make a great improvement for the structure of crane and provide a meaningful theoretical reference for the hoisting machinery innovation design.


2013 ◽  
Vol 397-400 ◽  
pp. 1580-1588
Author(s):  
Man Lu Liu ◽  
Jing Zhang ◽  
Kuan Li

To solve the instability of track robot in the process of climbing obstacles, a track robot with passive rocker was designed and a three-dimensional model of track robot was developed by Unigraphics NX in this paper. Furthermore, the kinematic analysis was made for obstacle performance of the track robot. The virtual prototype model of the track robot with passive rocker was set up by using the tracked vehicle subsystem of multi-body dynamics simulation software RecurDyn and kinematics simulation for this robot was made. The simulation results verify the feasibility of the machine and provide some theoretical guidance for developing the obstacle performance of track robot.


2013 ◽  
Vol 444-445 ◽  
pp. 1384-1388
Author(s):  
Bin Hua ◽  
Yi Lin Chi ◽  
Xue Jun Wang ◽  
Quan Bai ◽  
Wei Zhong

The article describes how we can use the virtual prototyping technology validate mechanism design of multi-joint manipulator and its grabbing performance and loading abilities per minute. It completes the three-dimensional model of virtual prototype with Solid Edge ST5, and be imported into ADAMS software. And then the manipulator kinematics simulation is carried out in ADAMS. Using the kinematics simulation technology of ADAMS, we can get the various joints in a working cycle of the displacement characteristic curve, the velocity and acceleration curves of working conditions. This paper introduces how to establish the geometric model of articulated robot virtual prototype model. And some key technology details such as adding a constraint to model are also described. Kinematics simulation analysis of the manipulator with ADAMS software can greatly shorten the design cycle, improve design accuracy and reduce the cost of product development.


2012 ◽  
Vol 246-247 ◽  
pp. 1220-1225
Author(s):  
You Kun Zhong

With the increasing of the number of cars, people are also getting higher and higher demands on the performance of the car, and especially pay attention to the improvement and optimization of automobile transmission system. The transmission is a key part of automobile transmission system, and transmission performance and stability depend on the synchronous machine, so in order to make the vehicle transmission system with higher efficiency, it is necessary to study the synchronous machine. On the basis of elaborating synchronous machine working principle, the use of dynamics theory to establish mathematical model of synchronous machine system, and to carry out the simulation of synchronous machine three-dimensional model in PRO/E environment, then the use of virtual prototype technology to optimize the parameters of synchronous machine, thereby improving the performance of synchronous machine.


Biochemistry ◽  
1990 ◽  
Vol 29 (45) ◽  
pp. 10317-10322 ◽  
Author(s):  
Lennart Nilsson ◽  
Agneta Aahgren-Staalhandske ◽  
Ann Sofie Sjoegren ◽  
Solveig Hahne ◽  
Britt Marie Sjoeberg

2014 ◽  
Vol 662 ◽  
pp. 183-186
Author(s):  
Guo Lei Xu ◽  
Tao Wu

This paper introduces an easy-sided automatic window cleaning device, which uses Solid Edge software to design three-dimensional model and simulation analysis of the structure. Contrasted with the function of existing products, this design has such advantages as simple structure, low cost, high efficiency, good effects and so on.


Author(s):  
Rapeepan Promyoo ◽  
Hazim El-Mounayri ◽  
Kody Varahramyan

In this paper, a developed three-dimensional model for AFM-based nanomachining is applied to study mechanical scratching at the nanoscale. The correlation between the scratching conditions, including applied force, scratching depth, and distant between any two scratched grooves, and the defect mechanism in the substrate/workpiece is investigated. The simulations of nanoscratching process are performed on different crystal orientations of single-crystal gold substrate, Au(100), Au(110), and Au(111). The material deformation and groove geometry are extracted from the final locations of atoms, which are displaced by the rigid indenter. The simulation also allows for the prediction of normal and friction forces at the interface between the indenter and substrate. An AFM is used to conduct actual scratching at the nanoscale, and provide measurements to which the MD simulation predictions are compared. The predicted forces obtained from MD simulation compares qualitatively with the experimental results.


2013 ◽  
Vol 431 ◽  
pp. 253-257
Author(s):  
Qing Zhong He ◽  
Pu Quan Wang ◽  
Peng Duan ◽  
Shuai Guo ◽  
Ming Zhang ◽  
...  

This paper tries using Inventor software to create the three-dimensional model of the the palletizing robots operation rear arm, and then importing this model to ABAQUS to proceed finite element analysis of statics. We verified these two softwares interface issues, the correctness of the calculation method and the steps by analyzing. From analyzing we found the security issues in the operation rear arm. Then we checked and optimized the model for the issues. From the result, the optimized model meets the strength design requirements. The study has reference value for engineering and technical people.


2018 ◽  
Vol 10 (7) ◽  
pp. 168781401878482
Author(s):  
Sun Xiaoxia ◽  
Meng Wenjun ◽  
Yuan Yuan

This article takes an efficient feeding head as the research object to study its work mechanism and perform dynamics analysis of the materials in the feeding head. In addition, this article obtains the physical prototype of a three-dimensional model and the feeding surface equation through the surface data of the feeding head and investigates different unfold lines of the feeding surface. In addition, this article recommends a curve equation of the feeding head under different friction coefficients through EDEM + FLUENT simulation analysis and conducts a research on transport and feeding quantity to deduce the equation for the transport quantity of the feeding head. Finally, the verity of the preceding curve equation and transport quantity is confirmed, which has important guiding significance for the feeding head design.


2013 ◽  
Vol 753-755 ◽  
pp. 973-976
Author(s):  
Li Da Zhu ◽  
Wen Wen Liu ◽  
Ji Jiang Wu ◽  
Shuai Xu ◽  
Peng Cheng Su

Blade is one of the main parts of aircraft engine. Its dynamic characteristics will produce important influence on the work efficiency and the operation reliability of the turbine engine. The paper used the theory of finite element to do modal simulation analysis on the dynamic characteristic of blade flutter, aiming at the phenomenon of serious blade vibration in the process of turbine engine running. Firstly, the paper generated a three-dimensional model by using the software UG. Then the three-dimensional model was leaded into the finite element analysis software ANSYS. Simulation analysis of the model was carried out by using the Workbench module of ANSYS software. Finally, we got the former six order natural frequencies and vibration modes of the blade. In addition, we got the blade's vibration characteristics. The results of the simulation could provide numerical basis for the blades optimization design and vibration safety inspection.


Sign in / Sign up

Export Citation Format

Share Document