Reduction of motion artifacts from pulse oximeter signals using tunable Q-factor wavelet transform technique

Author(s):  
M. Raghu Ram ◽  
Kosaraju Sivani ◽  
K. Ashoka Reddy
Electronics ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1905
Author(s):  
Partha Pratim Banik ◽  
Shifat Hossain ◽  
Tae-Ho Kwon ◽  
Hyoungkeun Kim ◽  
Ki-Doo Kim

Clinical devices play a vital role in diagnosing and monitoring people’s health. A pulse oximeter (PO) is one of the most common clinical devices for critical medical care. In this paper, we explain how we developed a wearable PO. We propose a new electronic circuit based on an analog filter that can separate red and green photoplethysmography (PPG) signals, acquire clean PPG signals, and estimate the pulse rate (PR) and peripheral capillary oxygen saturation (SpO2). We propose a PR and SpO2 measurement algorithm with and without the motion artifact. We consider three types of motion artifacts with our acquired clean PPG signal from our proposed electronic circuit. To evaluate our proposed algorithm, we measured the accuracy of our estimated SpO2 and PR. To evaluate the quality of our estimated PR (bpm) and SpO2 (%) with and without the finger motion artifact, we used the quality evaluation metrics: mean absolute percentage error (MAPE), mean absolute error (MAE), and reference closeness factor (RCF). Without the finger motion condition, we found that our proposed wearable PO device achieved an average 2.81% MAPE, 2.08 bpm MAE, 0.97 RCF, and 98.96% SpO2 accuracy. With a finger motion, the proposed wearable PO device achieved an average 4.5% MAPE, 3.66 bpm MAE, 0.96 RCF, and 96.88% SpO2 accuracy. We also show a comparison of our proposed PO device with a commercial Fingertip PO (FPO) device. We have found that our proposed PO device performs better than the commercial FPO device under finger motion conditions. To demonstrate the implementation of our wearable PO, we developed a smartphone app to allow the PO device to share PPG signals, PR, and SpO2 through Bluetooth communication. We also show the possible applications of our proposed PO as a wearable, hand-held PO device, and a PPG signal acquisition system.


Author(s):  
Abdelouahad Achmamad ◽  
Abdelali Belkhou ◽  
Atman Jbari

Early diagnosis of amyotrophic lateral sclerosis (ALS) based on electromyography (EMG) is crucial. The processing of a non-stationary EMG signal requires powerful multi-resolution methods. Our study analyzes and classifies the EMG signals. In the present work, we introduce a novel flexible method for classification of EMG signals using tunable Q-factor wavelet transform (TQWT). Different sub-bands generated by the TQWT technique were served to extract useful information related to energy and then the calculated features were selected using a filter selection (FS) method. The effectiveness of the feature selection step resulted not only in the improvement of classification performance but also in reducing the computation time of the classification algorithm. The selected feature subsets were used as inputs to multiple classifier algorithms, namely, k-nearest neighbor (k-NN), least squares support vector machine (LS-SVM) and random forest (RF) for automated diagnosis. The experimental results show better classification measures with k-NN classifier compared with LS-SVM and RF. The robustness of the classification task was tested using a ten-fold cross-validation method. The outcomes of our proposed approach can be exploited to aid clinicians in neuromuscular disorders detection.


2021 ◽  
Vol 138 ◽  
pp. 104867
Author(s):  
Abdullah Dogan ◽  
Merve Akay ◽  
Prabal Datta Barua ◽  
Mehmet Baygin ◽  
Sengul Dogan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document