A High-performance Post-deduplication Delta Compression Scheme for Packed Datasets

Author(s):  
Yucheng Zhang ◽  
Hong Jiang ◽  
Mengtian Shi ◽  
Chunzhi Wang ◽  
Nan Jiang ◽  
...  
2015 ◽  
Vol 12 ◽  
pp. 181-190 ◽  
Author(s):  
K. Masui ◽  
M. Amiri ◽  
L. Connor ◽  
M. Deng ◽  
M. Fandino ◽  
...  

2019 ◽  
Vol 26 (4) ◽  
pp. 1127-1138 ◽  
Author(s):  
Heung-Sik Kang ◽  
Haeryong Yang ◽  
Gyujin Kim ◽  
Hoon Heo ◽  
Inhyuk Nam ◽  
...  

PAL-XFEL utilizes a three-chicane bunch compression (3-BC) scheme (the very first of its kind in operation) for free-electron laser (FEL) operation. The addition of a third bunch compressor allows for more effective mitigation of coherent synchrotron radiation during bunch compression and an increased flexibility of system configuration. Start-to-end simulations of the effects of radiofrequency jitter on the electron beam performance show that using the 3-BC scheme leads to better performance compared with the two-chicane bunch compression scheme. Together with the high performance of the linac radiofrequency system, it enables reliable operation of PAL-XFEL with unprecedented stability in terms of arrival timing, pointing and intensity; an arrival timing jitter of better than 15 fs, a transverse position jitter of smaller than 10% of the photon beam size, and an FEL intensity jitter of smaller than 5% are consistently achieved.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
N. Sriraam

Developments of new classes of efficient compression algorithms, software systems, and hardware for data intensive applications in today's digital health care systems provide timely and meaningful solutions in response to exponentially growing patient information data complexity and associated analysis requirements. Of the different 1D medical signals, electroencephalography (EEG) data is of great importance to the neurologist for detecting brain-related disorders. The volume of digitized EEG data generated and preserved for future reference exceeds the capacity of recent developments in digital storage and communication media and hence there is a need for an efficient compression system. This paper presents a new and efficient high performance lossless EEG compression using wavelet transform and neural network predictors. The coefficients generated from the EEG signal by integer wavelet transform are used to train the neural network predictors. The error residues are further encoded using a combinational entropy encoder, Lempel-Ziv-arithmetic encoder. Also a new context-based error modeling is also investigated to improve the compression efficiency. A compression ratio of 2.99 (with compression efficiency of 67%) is achieved with the proposed scheme with less encoding time thereby providing diagnostic reliability for lossless transmission as well as recovery of EEG signals for telemedicine applications.


2015 ◽  
Vol 2015 ◽  
pp. 1-5 ◽  
Author(s):  
Wei Jin ◽  
Zhen Liu ◽  
Gang Li

An ideal compression method for neutron radiation image should have high compression ratio while keeping more details of the original image. Compressed sensing (CS), which can break through the restrictions of sampling theorem, is likely to offer an efficient compression scheme for the neutron radiation image. Combining wavelet transform with directional filter banks, a novel nonredundant multiscale geometry analysis transform named Wavelet Directional Filter Banks (WDFB) is constructed and applied to represent neutron radiation image sparsely. Then, the block-based CS technique is introduced and a high performance CS scheme for neutron radiation image is proposed. By performing two-step iterative shrinkage algorithm the problem of L1 norm minimization is solved to reconstruct neutron radiation image from random measurements. The experiment results demonstrate that the scheme not only improves the quality of reconstructed image obviously but also retains more details of original image.


2020 ◽  
Vol 17 (4) ◽  
pp. 1852-1856
Author(s):  
P. Bhuvaneshwari ◽  
T. R. Jaya Chandra Lekha

This project proposes multilayer advanced high-performance bus architecture for low power applications. The proposed AHB architecture consists of the bus arbiter and the bus tracer (A.R.M.A., 1999. Specification (Rev 2.0) ARM IHI0011A). The bus arbiter, which is self motivated selects the input packet based on the control signals of the incoming packet. So that arbitration leads to a maximum performance. The On-Chip bus is an important system-on-chip infrastructure that connects major hardware components. Monitoring the on-chip bus signals is crucial to the SoC debugging and performance analysis/optimization (Gu, R.T., et al., 2007. A Low Cost Tile-Based 3D Graphics Full Pipeline with Real-Time Performance Monitoring Support for OpenGL ES in Consumer Electronics. 2007 IEEE International Symposium on Consumer Electronics, June; IEEE. pp.1–6). But, such signals are difficult to observe since they are deeply embedded in a SoC and there are often no sufficient I/O pins to access these signals. Therefore, a straightforward approach is to embed a bus tracer in SoC to capture the bus signal trace and store the trace in on-chip storage such as the trace memory which could then be off loaded to outside world for analysis. The bus tracer is capable of capturing the bus trace with different resolutions, all with efficient built in compression mechanisms such as dictionary based compression scheme for address and control signals and differential compression scheme for data. To improve the compression ratio matrix based compression which is lossless compression is used instead of differential compression. This system is designed using Verilog HDL, simulated using Modelsim and synthesized using Xilinx software.


Author(s):  
A. V. Crewe ◽  
M. Isaacson ◽  
D. Johnson

A double focusing magnetic spectrometer has been constructed for use with a field emission electron gun scanning microscope in order to study the electron energy loss mechanism in thin specimens. It is of the uniform field sector type with curved pole pieces. The shape of the pole pieces is determined by requiring that all particles be focused to a point at the image slit (point 1). The resultant shape gives perfect focusing in the median plane (Fig. 1) and first order focusing in the vertical plane (Fig. 2).


Author(s):  
N. Yoshimura ◽  
K. Shirota ◽  
T. Etoh

One of the most important requirements for a high-performance EM, especially an analytical EM using a fine beam probe, is to prevent specimen contamination by providing a clean high vacuum in the vicinity of the specimen. However, in almost all commercial EMs, the pressure in the vicinity of the specimen under observation is usually more than ten times higher than the pressure measured at the punping line. The EM column inevitably requires the use of greased Viton O-rings for fine movement, and specimens and films need to be exchanged frequently and several attachments may also be exchanged. For these reasons, a high speed pumping system, as well as a clean vacuum system, is now required. A newly developed electron microscope, the JEM-100CX features clean high vacuum in the vicinity of the specimen, realized by the use of a CASCADE type diffusion pump system which has been essentially improved over its predeces- sorD employed on the JEM-100C.


Sign in / Sign up

Export Citation Format

Share Document