Automatic queue monitoring in store using a low-cost IoT sensing platform

Author(s):  
Supatta Viriyavisuthisakul ◽  
Parinya Sanguansat ◽  
Satoshi Toriumi ◽  
Mikihara Hayashi ◽  
Toshihiko Yamasaki
2021 ◽  
Vol 13 (39) ◽  
pp. 4662-4673
Author(s):  
Lulu Xu ◽  
Ruimei Wu ◽  
Xiaoyu Zhu ◽  
Xiaoqiang Wang ◽  
Xiang Geng ◽  
...  

A simple intelligent electrochemical sensing platform based on a low-cost disposable laser-induced porous graphene flexible electrode for maleic hydrazide coupled with machine learning was successfully designed.


2020 ◽  
Vol 10 (11) ◽  
pp. 3730 ◽  
Author(s):  
Josep M. Maso ◽  
Jordi Male ◽  
Joaquim Porte ◽  
Joan L. Pijoan ◽  
David Badia

Every year more interest is focused on high frequencies (HF) communications for remote sensing platforms due to their capacity to establish links of more than 250 km without a line of sight and due to them being a low-cost alternative to satellite communications. In this article, we study the ionospheric ordinary and extraordinary waves to improve the applications of near vertical incidence skywave (NVIS) on a single input multiple output (SIMO) configuration. To obtain the results, we established a link of 95 km to test the diversity combining of ordinary and extraordinary waves by using selection combining (SC) and equal-gain combining (EGC) on a remote sensing platform. The testbench is based on digital modulation transmissions with power transmission between 3 and 100 W. The results show us the main energy per bit to noise spectral density ratio (Eb/N0) and the bit error rate (BER) differences between ordinary and extraordinary waves, SC, and EGC. To conclude, diversity techniques show us a decrease of the power transmission need, allowing for the use of compact antennas and increasing battery autonomy. Furthermore, we present three different improvement options for NVIS SIMO remote sensing platforms depending on the requirements of bitrate, power consumption, and efficiency of communication.


Biosensors ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 90
Author(s):  
Alessandra Zanut ◽  
Alessandro Cian ◽  
Nicola Cefarin ◽  
Alessandro Pozzato ◽  
Massimo Tormen

Electrochemical sensors are devices capable of detecting molecules and biomolecules in solutions and determining the concentration through direct electrical measurements. These systems can be miniaturized to a size less than 1 µm through the creation of small-size arrays of nanoelectrodes (NEA), offering advantages in terms of increased sensitivity and compactness. In this work, we present the fabrication of an electrochemical platform based on an array of nanoelectrodes (NEA) and its possible use for the detection of antigens of interest. NEAs were fabricated by forming arrays of nanoholes on a thin film of polycarbonate (PC) deposited on boron-doped diamond (BDD) macroelectrodes by thermal nanoimprint lithography (TNIL), which demonstrated to be a highly reliable and reproducible process. As proof of principle, gliadin protein fragments were physisorbed on the polycarbonate surface of NEAs and detected by immuno-indirect assay using a secondary antibody labelled with horseradish peroxidase (HRP). This method allows a successful detection of gliadin, in the range of concentration of 0.5–10 μg/mL, by cyclic voltammetry taking advantage from the properties of NEAs to strongly suppress the capacitive background signal. We demonstrate that the characteristics of the TNIL technology in the fabrication of high-resolution nanostructures together with their low-cost production, may allow to scale up the production of NEAs-based electrochemical sensing platform to monitor biochemical molecules for both food and biomedical applications.


2018 ◽  
Vol 5 (2) ◽  
pp. 87-96 ◽  
Author(s):  
Yi Zhao ◽  
Huaye Li ◽  
Saman Naderiparizi ◽  
Aaron Parks ◽  
Joshua R. Smith

Near-field communication (NFC) readers, ubiquitously embedded in smartphones and other infrastructures can wirelessly deliver mW-level power to NFC tags. Our previous work NFC-wireless identification and sensing platform (WISP) proves that the generated NFC signal from an NFC enabled phone can power a tag (NFC-WISP) with display and sensing capabilities in addition to identification. However, accurately aligning and placing the NFC tag's antenna to ensure the high power delivery efficiency and communication performance is very challenging for the users. In addition, the performance of the NFC tag is not only range and alignment sensitive but also is a function of its run-time load impedance. This makes the execution of power-hungry tasks on an NFC tag (like the NFC-WISP) very challenging. Therefore, we explore a low-cost tag antenna design to achieve higher power delivered to the load (PDL) by utilizing two different antenna configurations (2-coil/3-coil). The two types of antenna configurations can be used to dynamically adapt to the requirements of varied range, alignment and load impedance in real-time, therefore, we achieve continuous high PDL and reliable communication. With the proposed method, we can, for example, turn a semi-passive NFC-WISP into a passive display tag in which an embedded 2.7″ E-ink screen can be updated robustly by a tapped NFC reader (e.g. an NFC-enable cell-phone) over a 3 seconds and within 1.5cm range.


Sensors ◽  
2020 ◽  
Vol 20 (17) ◽  
pp. 4916
Author(s):  
Xunmin Zhu ◽  
Nan Li ◽  
Jianyu Yang ◽  
Xingfan Chen ◽  
Huizhu Hu

As a kind of ultra-sensitive acceleration sensing platform, optical tweezers show a minimum measurable value inversely proportional to the square of the diameter of the levitated spherical particle. However, with increasing diameter, the coupling of the displacement measurement between the axes becomes noticeable. This paper analyzes the source of coupling in a forward-scattering far-field detection regime and proposes a novel method of suppression. We theoretically and experimentally demonstrated that when three variable irises are added into the detection optics without changing other parts of optical structures, the decoupling of triaxial displacement signals mixed with each other show significant improvement. A coupling detection ratio reduction of 49.1 dB and 22.9 dB was realized in radial and axial directions, respectively, which is principally in accord with the simulations. This low-cost and robust approach makes it possible to accurately measure three-dimensional mechanical quantities simultaneously and may be helpful to actively cool the particle motion in optical tweezers even to the quantum ground state in the future.


Sign in / Sign up

Export Citation Format

Share Document