scholarly journals Displacement Detection Decoupling in Counter-Propagating Dual-Beams Optical Tweezers with Large-Sized Particle

Sensors ◽  
2020 ◽  
Vol 20 (17) ◽  
pp. 4916
Author(s):  
Xunmin Zhu ◽  
Nan Li ◽  
Jianyu Yang ◽  
Xingfan Chen ◽  
Huizhu Hu

As a kind of ultra-sensitive acceleration sensing platform, optical tweezers show a minimum measurable value inversely proportional to the square of the diameter of the levitated spherical particle. However, with increasing diameter, the coupling of the displacement measurement between the axes becomes noticeable. This paper analyzes the source of coupling in a forward-scattering far-field detection regime and proposes a novel method of suppression. We theoretically and experimentally demonstrated that when three variable irises are added into the detection optics without changing other parts of optical structures, the decoupling of triaxial displacement signals mixed with each other show significant improvement. A coupling detection ratio reduction of 49.1 dB and 22.9 dB was realized in radial and axial directions, respectively, which is principally in accord with the simulations. This low-cost and robust approach makes it possible to accurately measure three-dimensional mechanical quantities simultaneously and may be helpful to actively cool the particle motion in optical tweezers even to the quantum ground state in the future.

Author(s):  
Xunmin Zhu ◽  
Nan Li ◽  
Jianyu Yang ◽  
Xingfan Chen ◽  
Huizhu Hu

Optical tweezers, as a kind of ultra-sensitive acceleration sensing platform, show a minimum measurable value inversely proportional to the square of the diameter of the levitated spherical particle. However, the coupling of the displacement measurement between axes becomes notable, along with the increasing of the diameter. This paper analyzes the source of coupling in a forward scattering far-field detection regime and proposes a novel method of suppression. We theoretically and experimentally demonstrated that when three variable irises added into detection optics, without changing other parts of optical structures, the decoupling of triaxial displacement signals mixed with each other show significant improvement. The detection coupling ratio reduction of 49.1 dB and 22.9dB has been realized in radial and axial direction respectively, which is principally in accord with simulations. This low cost and robust approach makes it possible to accurately measure three-dimensional mechanical quantities simultaneously and even go further such as active cooling the particle to quantum ground state.


2015 ◽  
Vol 656-657 ◽  
pp. 549-553
Author(s):  
Kyohei Nishimoto ◽  
Kozo Taguchi

Dielectrophoresis (DEP) force will arise when an inhomogeneous AC electric field with sinusoidal wave is applied to microelectrodes. By using DEP, we could distinguish between viable and non-viable cells by their movement through a non-uniform electric field. In this paper, we propose a yeast cell separation system, which utilizes an Au DEP chip and an optical tweezers. The Au DEP chip is planar quadrupole microelectrodes, which were fabricated by Au thin-film and a box cutter. This fabrication method is low cost and simpler than previous existing methods. The tip of the optical tweezers was fabricated by dynamic chemical etching in a mixture of hydrogen fluoride and toluene. The optical tweezers has the feature of high manipulation performance. That does not require objective lens for focusing light because the tip of optical tweezers has conical shape. By using both the Au DEP chip and optical tweezers, we could obtain three-dimensional manipulation of specific cells after viability separation.


Sensors ◽  
2018 ◽  
Vol 18 (9) ◽  
pp. 2862 ◽  
Author(s):  
Huixiang Wu ◽  
Xiangcheng Sun ◽  
Changjun Hou ◽  
Jingzhou Hou ◽  
Yu Lei

In this study, two new quasi-three-dimensional Surface Enhanced Raman Scattering (SERS) substrates, namely porous Ag and Ag-NiO nanofibrous mats, were prepared using a simple, electrospinning-calcination, two-step synthetic process. AgNO3/polyvinyl pyrrolidone (PVP) and AgNO3/Ni(NO3)2/PVP composites serving as precursors were electrospun to form corresponding precursory nanofibers. Porous Ag and Ag-NiO nanofibers were successfully obtained after a 3-h calcination at 500 °C under air atmosphere, and analyzed using various material characterization techniques. Synthesized, quasi-three-dimensional porous Ag and Ag-NiO nanofibrous mats were applied as SERS substrates, to measure the model compound Rhodamine 6G (R6G), and investigate the corresponding signal enhancement. Furthermore, porous Ag and Ag-NiO nanofibrous mats were employed as SERS substrates for melamine and methyl parathion respectively. Sensitive detection of melamine and methyl parathion was achieved, indicating their feasibility as an active SERS sensing platform, and potential for food safety and environmental monitoring. All the results suggest that the electrospinning-calcination, two-step method offers a new, low cost, high performance solution in the preparation of SERS substrates.


2010 ◽  
Vol 663-665 ◽  
pp. 1183-1186
Author(s):  
Huan Liu ◽  
Wei Guo Liu ◽  
Chang Long Cai ◽  
Shun Zhou

A novel method for fabrication of self-supporting microbridge based on a-si films with tilted support legs for bolometer is studied in this paper. Based on the research of diffractive characteristics when the light passing through the mask in proximity lithography, we found if the distance of mask and photoresist is suitable, the intensity distribution curve of Fraunhofer diffraction (far field diffraction) at the border of contacthole is suitable to fabricate microbridge with tilted legs. By use of the method, the constant change of photoresist thickness around the contacthole can be realized using the far field diffraction proximity lithography. Then transfer the outline of photoresist to the sacrificial layer by plasma etching. Thus the fabrication of microbridge with tilted support legs was carried out easily, and this method has the advantages of low cost, simple and feasible.


2020 ◽  
Vol 64 (5) ◽  
pp. 50405-1-50405-5
Author(s):  
Young-Woo Park ◽  
Myounggyu Noh

Abstract Recently, the three-dimensional (3D) printing technique has attracted much attention for creating objects of arbitrary shape and manufacturing. For the first time, in this work, we present the fabrication of an inkjet printed low-cost 3D temperature sensor on a 3D-shaped thermoplastic substrate suitable for packaging, flexible electronics, and other printed applications. The design, fabrication, and testing of a 3D printed temperature sensor are presented. The sensor pattern is designed using a computer-aided design program and fabricated by drop-on-demand inkjet printing using a magnetostrictive inkjet printhead at room temperature. The sensor pattern is printed using commercially available conductive silver nanoparticle ink. A moving speed of 90 mm/min is chosen to print the sensor pattern. The inkjet printed temperature sensor is demonstrated, and it is characterized by good electrical properties, exhibiting good sensitivity and linearity. The results indicate that 3D inkjet printing technology may have great potential for applications in sensor fabrication.


2017 ◽  
Vol 68 (3) ◽  
pp. 453-458 ◽  
Author(s):  
Daniel Besnea ◽  
Alina Spanu ◽  
Iuliana Marlena Prodea ◽  
Gheorghita Tomescu ◽  
Iolanda Constanta Panait

The paper points out the advantages of rapid prototyping for improving the performances/constructive optimization of mixing devices used in process industries, here exemplified to propeller types ones. The multidisciplinary optimization of the propeller profile affords its design using parametric CAD methods. Starting from the mathematical curve equations proposed for the blade profile, it was determined its three-dimensional virtual model. The challenge has been focused on the variation of propeller pitch and external diameter. Three dimensional ranges were manufactured using the additive manufacturing process with Marker Boot 3D printer. The mixing performances were tested on the mixing equipment measuring the minimum rotational speed and the correspondent shaft torque for complete suspension achieved for each of the three models. The virtual and rapid prototyping method is newly proposed by the authors to obtain the basic data for scale up of the mixing systems, in the case of flexible production (of low quantities), in which both the nature and concentration of the constituents in the final product varies often. It is an efficient and low cost method for the rapid identification of the optimal mixing device configuration, which contributes to the costs reduction and to the growing of the output.


1982 ◽  
Vol 14 (3) ◽  
pp. 33-39
Author(s):  
C Y Kuo

An existing, three-dimensional, Eulerian-Lagrangian finite-difference model was modified and used to examine the far-field transport processes of dumped sewage sludge in the New York Bight. Both in situ and laboratory data were utilized in an attempt to approximate model inputs such as mean current speed, vertical and horizontal diffusion coefficients, particle size distributions, and specific gravities. Concentrations of the sludge near the sea surface predicted from the computer model were compared qualitatively with those remotely sensed.


Sign in / Sign up

Export Citation Format

Share Document