Research on gait recognition algorithm based on deep learning

Author(s):  
Zhang Yujie ◽  
Cai Lecai ◽  
Zhiming Wu ◽  
Kui Cheng ◽  
Di Wu ◽  
...  
Author(s):  
Chaoran Liu ◽  
Wei Qi Yan

Gait recognition mainly uses different postures of each individual to perform identity authentication. In the existing methods, the full-cycle gait images are used for feature extraction, but there are problems such as occlusion and frame loss in the actual scene. It is not easy to obtain a full-cycle gait image. Therefore, how to construct a highly efficient gait recognition algorithm framework based on a small number of gait images to improve the efficiency and accuracy of recognition has become the focus of gait recognition research. In this chapter, deep neural network CRBM+FC is created. Based on the characteristics of Local Binary Pattern (LBP) and Histogram of Oriented Gradient (HOG) fusion, a method of learning gait recognition from GEI to output is proposed. A brand-new gait recognition algorithm based on layered fu-sion of LBP and HOG is proposed. This chapter also proposes a feature learning network, which uses an unsupervised convolutionally constrained Boltzmann machine to train the Gait Energy Images (GEI).


2020 ◽  
pp. 1-12
Author(s):  
Hu Jingchao ◽  
Haiying Zhang

The difficulty in class student state recognition is how to make feature judgments based on student facial expressions and movement state. At present, some intelligent models are not accurate in class student state recognition. In order to improve the model recognition effect, this study builds a two-level state detection framework based on deep learning and HMM feature recognition algorithm, and expands it as a multi-level detection model through a reasonable state classification method. In addition, this study selects continuous HMM or deep learning to reflect the dynamic generation characteristics of fatigue, and designs random human fatigue recognition experiments to complete the collection and preprocessing of EEG data, facial video data, and subjective evaluation data of classroom students. In addition to this, this study discretizes the feature indicators and builds a student state recognition model. Finally, the performance of the algorithm proposed in this paper is analyzed through experiments. The research results show that the algorithm proposed in this paper has certain advantages over the traditional algorithm in the recognition of classroom student state features.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Yuanyuan Xu ◽  
Genke Yang ◽  
Jiliang Luo ◽  
Jianan He

Electronic component recognition plays an important role in industrial production, electronic manufacturing, and testing. In order to address the problem of the low recognition recall and accuracy of traditional image recognition technologies (such as principal component analysis (PCA) and support vector machine (SVM)), this paper selects multiple deep learning networks for testing and optimizes the SqueezeNet network. The paper then presents an electronic component recognition algorithm based on the Faster SqueezeNet network. This structure can reduce the size of network parameters and computational complexity without deteriorating the performance of the network. The results show that the proposed algorithm performs well, where the Receiver Operating Characteristic Curve (ROC) and Area Under the Curve (AUC), capacitor and inductor, reach 1.0. When the FPR is less than or equal 10 − 6   level, the TPR is greater than or equal to 0.99; its reasoning time is about 2.67 ms, achieving the industrial application level in terms of time consumption and performance.


2014 ◽  
Vol 687-691 ◽  
pp. 3861-3868
Author(s):  
Zheng Hong Deng ◽  
Li Tao Jiao ◽  
Li Yan Liu ◽  
Shan Shan Zhao

According to the trend of the intelligent monitoring system, on the basis of the study of gait recognition algorithm, the intelligent monitoring system is designed based on FPGA and DSP; On the one hand, FPGA’s flexibility and fast parallel processing algorithms when designing can be both used to avoid that circuit can not be modified after designed; On the other hand, the advantage of processing the digital signal of DSP is fully taken. In the feature extraction and recognition, Zernike moment is selected, at the same time the system uses the nearest neighbor classification method which is more mature and has good real-time performance. Experiments show that the system has high recognition rate.


Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Binbin Wang ◽  
Tingli Su ◽  
Xuebo Jin ◽  
Jianlei Kong ◽  
Yuting Bai

An inertial measurement unit-based pedestrian navigation system that relies on the intelligent learning algorithm is useful for various applications, especially under some severe conditions, such as the tracking of firefighters and miners. Due to the complexity of the indoor environment, signal occlusion problems could lead to the failure of certain positioning methods. In complex environments, such as those involving fire rescue and emergency rescue, the barometric altimeter fails because of the influence of air pressure and temperature. This paper used an optimal gait recognition algorithm to improve the accuracy of gait detection. Then a learning-based moving direction determination method was proposed. With the Kalman filter and a zero-velocity update algorithm, different gaits could be accurately recognized, such as going upstairs, downstairs, and walking flat. According to the recognition results, the position change in the vertical direction could be reasonably corrected. The obtained 3D trajectory involving both horizontal and vertical movements has shown that the accuracy is significantly improved in practical complex environments.


2021 ◽  
Author(s):  
ming ji ◽  
Chuanxia Sun ◽  
Yinglei Hu

Abstract In order to solve the increasingly serious traffic congestion problem, an intelligent transportation system is widely used in dynamic traffic management, which effectively alleviates traffic congestion and improves road traffic efficiency. With the continuous development of traffic data acquisition technology, it is possible to obtain real-time traffic data in the road network in time. A large amount of traffic information provides a data guarantee for the analysis and prediction of road network traffic state. Based on the deep learning framework, this paper studies the vehicle recognition algorithm and road environment discrimination algorithm, which greatly improves the accuracy of highway vehicle recognition. Collect highway video surveillance images in different environments, establish a complete original database, build a deep learning model of environment discrimination, and train the classification model to realize real-time environment recognition of highway, as the basic condition of vehicle recognition and traffic event discrimination, and provide basic information for vehicle detection model selection. To improve the accuracy of road vehicle detection, the vehicle target labeling and sample preprocessing of different environment samples are carried out. On this basis, the vehicle recognition algorithm is studied, and the vehicle detection algorithm based on weather environment recognition and fast RCNN model is proposed. Then, the performance of the vehicle detection algorithm described in this paper is verified by comparing the detection accuracy differences between different environment dataset models and overall dataset models, different network structures and deep learning methods, and other methods.


Sign in / Sign up

Export Citation Format

Share Document