Construction and Application of Chinese Enterprise Knowledge Graph Based on Neural Networks

Author(s):  
Nian Yang ◽  
Dongxin Shi ◽  
Yan Hua
2020 ◽  
Vol 34 (01) ◽  
pp. 222-229
Author(s):  
Zequn Sun ◽  
Chengming Wang ◽  
Wei Hu ◽  
Muhao Chen ◽  
Jian Dai ◽  
...  

Graph neural networks (GNNs) have emerged as a powerful paradigm for embedding-based entity alignment due to their capability of identifying isomorphic subgraphs. However, in real knowledge graphs (KGs), the counterpart entities usually have non-isomorphic neighborhood structures, which easily causes GNNs to yield different representations for them. To tackle this problem, we propose a new KG alignment network, namely AliNet, aiming at mitigating the non-isomorphism of neighborhood structures in an end-to-end manner. As the direct neighbors of counterpart entities are usually dissimilar due to the schema heterogeneity, AliNet introduces distant neighbors to expand the overlap between their neighborhood structures. It employs an attention mechanism to highlight helpful distant neighbors and reduce noises. Then, it controls the aggregation of both direct and distant neighborhood information using a gating mechanism. We further propose a relation loss to refine entity representations. We perform thorough experiments with detailed ablation studies and analyses on five entity alignment datasets, demonstrating the effectiveness of AliNet.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Wanheng Liu ◽  
Ling Yin ◽  
Cong Wang ◽  
Fulin Liu ◽  
Zhiyu Ni

In this paper, a novel medical knowledge graph in Chinese approach applied in smart healthcare based on IoT and WoT is presented, using deep neural networks combined with self-attention to generate medical knowledge graph to make it more convenient for performing disease diagnosis and providing treatment advisement. Although great success has been made in the medical knowledge graph in recent studies, the issue of comprehensive medical knowledge graph in Chinese appropriate for telemedicine or mobile devices have been ignored. In our study, it is a working theory which is based on semantic mobile computing and deep learning. When several experiments have been carried out, it is demonstrated that it has better performance in generating various types of medical knowledge graph in Chinese, which is similar to that of the state-of-the-art. Also, it works well in the accuracy and comprehensive, which is much higher and highly consisted with the predictions of the theoretical model. It proves to be inspiring and encouraging that our work involving studies of medical knowledge graph in Chinese, which can stimulate the smart healthcare development.


Author(s):  
Qiannan Zhu ◽  
Xiaofei Zhou ◽  
Yuwen Wu ◽  
Ping Liu ◽  
Li Guo

Author(s):  
Yuan Sun ◽  
Andong Chen ◽  
Chaofan Chen ◽  
Tianci Xia ◽  
Xiaobing Zhao

Learning the representation of a knowledge graph is critical to the field of natural language processing. There is a lot of research for English knowledge graph representation. However, for the low-resource languages, such as Tibetan, how to represent sparse knowledge graphs is a key problem. In this article, aiming at scarcity of Tibetan knowledge graphs, we extend the Tibetan knowledge graph by using the triples of the high-resource language knowledge graphs and Point of Information map information. To improve the representation learning of the Tibetan knowledge graph, we propose a joint model to merge structure and entity description information based on the Translating Embeddings and Convolution Neural Networks models. In addition, to solve the segmentation errors, we use character and word embedding to learn more complex information in Tibetan. Finally, the experimental results show that our model can make a better representation of the Tibetan knowledge graph than the baseline.


Author(s):  
Xiaobin Tang ◽  
Jing Zhang ◽  
Bo Chen ◽  
Yang Yang ◽  
Hong Chen ◽  
...  

Knowledge graph alignment aims to link equivalent entities across different knowledge graphs. To utilize both the graph structures and the side information such as name, description and attributes, most of the works propagate the side information especially names through linked entities by graph neural networks. However, due to the heterogeneity of different knowledge graphs, the alignment accuracy will be suffered from aggregating different neighbors. This work presents an interaction model to only leverage the side information. Instead of aggregating neighbors, we compute the interactions between neighbors which can capture fine-grained matches of neighbors. Similarly, the interactions of attributes are also modeled. Experimental results show that our model significantly outperforms the best state-of-the-art methods by 1.9-9.7% in terms of HitRatio@1 on the dataset DBP15K.


2020 ◽  
Vol 34 (05) ◽  
pp. 8749-8757 ◽  
Author(s):  
Taneeya Satyapanich ◽  
Francis Ferraro ◽  
Tim Finin

We present CASIE, a system that extracts information about cybersecurity events from text and populates a semantic model, with the ultimate goal of integration into a knowledge graph of cybersecurity data. It was trained on a new corpus of 1,000 English news articles from 2017–2019 that are labeled with rich, event-based annotations and that covers both cyberattack and vulnerability-related events. Our model defines five event subtypes along with their semantic roles and 20 event-relevant argument types (e.g., file, device, software, money). CASIE uses different deep neural networks approaches with attention and can incorporate rich linguistic features and word embeddings. We have conducted experiments on each component in the event detection pipeline and the results show that each subsystem performs well.


Sign in / Sign up

Export Citation Format

Share Document