Analysis for Protocol Consolidation of Satellite Communication and 5G Mobile Communication

Author(s):  
XuQiong Chen ◽  
Quan Wang ◽  
Huajian Zhang
2020 ◽  
Vol 2 (1) ◽  
pp. 35-42
Author(s):  
Hemalatha R ◽  
Rhesa M.J. ◽  
Revathi S

The hest for technological advancement in mobile communication is due to augmentation of wireless user. The deployment of 5G mobile communication is less than 4G mobile communication due to challenges in security like cyberwarfare, espionage, critical infrastructure threats. Nevertheless, critic of neurological discomforts, tissue damage in living organisms occur in the existence of EMF radiation. Also, physical scarcity for spectral efficiency arises due to ubiquitous data traffic. Inspite of these disputes data rate, low latency, device to device communication is also a challenge. In this paper we provide a survey on radiation effects, security threats, traffic management.


2019 ◽  
Vol 12 (2) ◽  
pp. 95-100
Author(s):  
Purnima Sharma ◽  
Akshi Kotecha ◽  
Rama Choudhary ◽  
Partha Pratim Bhattacharya

Background: The Planar Inverted-F Antenna (PIFA) is most widely used for wireless communication applications due to its unique properties as low Specific Absorption Rate, low profile geometry and easy fabrication. In literature a number of multiband PIFA designs are available that support various wireless applications in mobile communication, satellite communication and radio frequency field. Methods: In this paper, a miniature sized planar inverted-F antenna has been proposed for dual-band operation. The antenna consists of an asymmetrical pentagonal shaped patch over an FR4 substrate. The overall antenna dimension is 10 × 10 × 3 mm3 and resonates at 5.7 GHz frequency. A modification is done in the patch structure by introducing an asymmetrical pentagon slot. Results: The proposed pentagonal antenna resonates at 5.7 GHz frequency. Further, modified antenna resonates at two bands. The lower band resonates at 5 GHz and having a bandwidth of 1.5 GHz. This band corresponds to C-band, which is suitable for satellite communication. The upper band is at 7.9 GHz with a bandwidth of 500 MHz. Performance parameters such as return loss, VSWR, input impedance and radiation pattern are obtained and analysed using ANSYS High- Frequency Structure Simulator. The radiation patterns obtained are directional, which are suitable for mobile communication. Conclusion: The antenna is compact in size and suitable for radar, satellite and vehicular communication.


Electronics ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 667
Author(s):  
Raza Ullah ◽  
Sadiq Ullah ◽  
Farooq Faisal ◽  
Rizwan Ullah ◽  
Dong-you Choi ◽  
...  

In this paper, antipodal Vivaldi antenna is designed for 5th generation (5G) mobile communication and Ku-band applications. The proposed designed has three layers. The upper layer consists of eight-element array of split-shaped leaf structures, which is fed by a 1-to-8 power divider network. Middle layer is a substrate made of Rogers 5880. The bottom layer consists of truncated ground and shorter mirror-image split leaf structures. The overall size of the designed antenna is confined significantly to 33.31 × 54.96 × 0.787 (volume in mm3), which is equivalent to 2λo× 3.3λo× 0.05λo (λo is free-space wavelength at 18 GHz). Proposed eight elements antenna is multi-band in nature covering Ku-bands (14.44–20.98 GHz), two millimeter wave (mmW) bands i.e., 24.34–29 GHz and 33–40 GHz, which are candidate frequency bands for 5G communications. The Ku-Band is suitable for radar applications. Proposed eight elements antenna is very efficient and has stable gain for 5G mobile communication and Ku-band applications. The simulation results are experimentally validated by testing the fabricated prototypes of the proposed design.


Author(s):  
Yueheng Li ◽  
Sven Bettinga ◽  
Joerg Eisenbeis ◽  
Jerzy Kowalewski ◽  
Xiang Wan ◽  
...  

Sensors ◽  
2018 ◽  
Vol 18 (12) ◽  
pp. 4390
Author(s):  
Tingli Xiang ◽  
Hongjun Wang

In order to overcome the limitations of traditional road test methods in 5G mobile communication network signal coverage detection, a signal coverage detection algorithm based on distributed sensor network for 5G mobile communication network is proposed. First, the received signal strength of the communication base station is collected and pre-processed by randomly deploying distributed sensor nodes. Then, the neural network objective function is modified by using the variogram function, and the initial weight coefficient of the neural network is optimized by using the improved particle swarm optimization algorithm. Next, the trained network model is used to interpolate the perceptual blind zone. Finally, the sensor node sampling data and the interpolation estimation result are combined to generate an effective coverage of the 5G mobile communication network signal. Simulation results indicate that the proposed algorithm can detect the real situation of 5G mobile communication network signal coverage better than other algorithms, and has certain feasibility and application prospects.


Sign in / Sign up

Export Citation Format

Share Document