scholarly journals Revisiting Point Cloud Classification: A New Benchmark Dataset and Classification Model on Real-World Data

Author(s):  
Mikaela Angelina Uy ◽  
Quang-Hieu Pham ◽  
Binh-Son Hua ◽  
Thanh Nguyen ◽  
Sai-Kit Yeung
Author(s):  
An Deng ◽  
Yunchao Wu ◽  
Peng Zhang ◽  
Zhuheng Lu ◽  
Weiqing Li ◽  
...  

IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 55991-55999
Author(s):  
Ruifeng Zhai ◽  
Xueyan Li ◽  
Zhenxin Wang ◽  
Shuxu Guo ◽  
Shuzhao Hou ◽  
...  

2022 ◽  
Vol 12 (1) ◽  
pp. 483
Author(s):  
Long Hoang ◽  
Suk-Hwan Lee ◽  
Eung-Joo Lee ◽  
Ki-Ryong Kwon

Light Detection and Ranging (LiDAR), which applies light in the formation of a pulsed laser to estimate the distance between the LiDAR sensor and objects, is an effective remote sensing technology. Many applications use LiDAR including autonomous vehicles, robotics, and virtual and augmented reality (VR/AR). The 3D point cloud classification is now a hot research topic with the evolution of LiDAR technology. This research aims to provide a high performance and compatible real-world data method for 3D point cloud classification. More specifically, we introduce a novel framework for 3D point cloud classification, namely, GSV-NET, which uses Gaussian Supervector and enhancing region representation. GSV-NET extracts and combines both global and regional features of the 3D point cloud to further enhance the information of the point cloud features for the 3D point cloud classification. Firstly, we input the Gaussian Supervector description into a 3D wide-inception convolution neural network (CNN) structure to define the global feature. Secondly, we convert the regions of the 3D point cloud into color representation and capture region features with a 2D wide-inception network. These extracted features are inputs of a 1D CNN architecture. We evaluate the proposed framework on the point cloud dataset: ModelNet and the LiDAR dataset: Sydney. The ModelNet dataset was developed by Princeton University (New Jersey, United States), while the Sydney dataset was created by the University of Sydney (Sydney, Australia). Based on our numerical results, our framework achieves more accuracy than the state-of-the-art approaches.


2021 ◽  
pp. 108251
Author(s):  
Huafeng Wang ◽  
Yaming Zhang ◽  
Wanquan Liu ◽  
Xianfeng Gu ◽  
Xin Jing ◽  
...  

Sensors ◽  
2018 ◽  
Vol 18 (12) ◽  
pp. 4206 ◽  
Author(s):  
Quan Li ◽  
Xiaojun Cheng

Point cloud classification is an essential requirement for effectively utilizing point cloud data acquired by Terrestrial laser scanning (TLS). Neighborhood selection, feature selection and extraction, and classification of points based on the respective features constitute the commonly used workflow of point cloud classification. Feature selection and extraction has been the focus of many studies, and the choice of different features has had a great impact on classification results. In previous studies, geometric features were widely used for TLS point cloud classification, and only a few studies investigated the potential of both intensity and color on classification using TLS point cloud. In this paper, the geometric features, color features, and intensity features were extracted based on a supervoxel neighborhood. In addition, the original intensity was also corrected for range effect, which is why the corrected intensity features were also extracted. The different combinations of these features were tested on four real-world data sets. Experimental results demonstrate that both color and intensity features can complement the geometric features to help improve the classification results. Furthermore, the combination of geometric features, color features, and corrected intensity features together achieves the highest accuracy in our test.


2016 ◽  
Vol 22 ◽  
pp. 219
Author(s):  
Roberto Salvatori ◽  
Olga Gambetti ◽  
Whitney Woodmansee ◽  
David Cox ◽  
Beloo Mirakhur ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document