Research on Energy Conservation and Emission Reduction Effect and Development Path of New Energy Electric Vehicle

Author(s):  
Zhiqiang Xu
2021 ◽  
Vol 1 (1) ◽  
pp. 10-15
Author(s):  
Sijin Ma ◽  
Jiahao Mai ◽  
Wanling Wang ◽  
Kemeng Yao ◽  
Deyu Li

Under the background of energy conservation and emission reduction advocated by the state, the sales volume of new energy vehicles increased rapidly and reached new highs in 2021. However, many domestic new energy vehicles still face the problems of serious homogenization and low market share. In view of this situation, we mine and capture the data of online consumers and potential consumers, analyze consumers' preferences in combination with the knowledge learned, take Shenzhen BYD Co., Ltd. as an example, analyze its competitive environment, and finally put forward feasible suggestions.


Energies ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 4397
Author(s):  
Dan Yu ◽  
Bart Dewancker ◽  
Fanyue Qian

The equipment energy efficiency improvement policy (EEEIP) is one of the important measures of energy conservation and emission reduction in various countries. However, due to the simultaneous implementation of variety policies, the effect of the single policy cannot be clearly reflected. In this paper, a method of identification and evaluation of EEEIP was proposed, and the application was verified by analyzing the example of EEEIP in Japan (Top Runner policy, TRP). Firstly, through the factor decomposition model, this paper studied the energy conservation and emission reduction potential of this policy area in Japan. Then, the TRP was identified by using moving windows and correlation analysis, and the impact of specific equipment in TRP was analyzed. Finally, through the calculation of the rebound effect of the carbon footprint (REC), this paper analyzed the energy consumption and emission reduction effects of TRP in the short-term and whole life cycle. It showed that the policy has a good effect in tertiary industry and transportation, while the effect in residential is poor. For life cycle, the TRP of air conditioning and passenger car can bring better CO2 emission reduction effect, but the emission reduction effect of lighting is basically offset.


2013 ◽  
Vol 415 ◽  
pp. 734-740
Author(s):  
Yun Long Ma ◽  
Xiao Hua Chen ◽  
Bo Liu ◽  
Guo Feng Zhang

This paper analyzes the characteristics and composition of the energy consumption system of the building from the perspective of systematic energy conservation and presents the systematic framework of the consumption model. Based on the framework, the paper focuses on how to establish a building energy consumption assessment system, find the energy efficiency index system and assessment approaches, and apply the results directly into building energy conservation and emission reduction. It not only facilitates greatly the overall and efficient management of the energy consumption system of the building, but also serves as another new approach to achieve energy conservation and emission reduction.


2011 ◽  
Vol 383-390 ◽  
pp. 4151-4157
Author(s):  
Wen Qi Tian ◽  
Jing Han He ◽  
Jiu Chun Jiang ◽  
Cheng Gang Du

With the increase of new energy power generation, the requirement of smart grid and the popularity of electric vehicles, the research focus on V2G. With Electric vehicles being distributed energy storage or distributed generation, peak regulation in power system is involved in important functions of V2G. In order to achieve peak regulation function, the paper has analyzed the control relationship between the electric vehicles, V2G station and electric vehicle charge\ discharge control center, presented charge and discharge control strategy based on the two levels of electric vehicle charge\discharging control center and V2G station control layer and introduced algorithms and examples to achieve these strategies.


Sign in / Sign up

Export Citation Format

Share Document