Study on the continuous cooling transformation behavior of ultra high strength hydropower steel

Author(s):  
Hai Zhang ◽  
Shaopo Li ◽  
Yang Zou
2022 ◽  
Vol 905 ◽  
pp. 83-87
Author(s):  
Lu Lu Feng ◽  
Wei Wen Qiao ◽  
Jian Sun ◽  
De Fa Li ◽  
Ping Ping Li ◽  
...  

The continuous cooling transformation behavior of high-carbon pearlitic steel was studied by employing optical microscopy, scanning electron microscopy, and the Vickers hardness test. The results show that the microstructure of the test steel is composed of proeutectoid cementite and lamellar pearlite in the cooling rate range of 0.05–2 °C/s and lamellar pearlite in the range of 2–5 °C/s. Further, martensite appears at 10 °C/s. With the increase in the cooling rate, the Vickers hardness of the test steel first decreases and then increases. In the industrial production of high-carbon pearlite steel, the formation of proeutectoid cementite at a low cooling rate needs to be avoided, and at the same time, the formation of martensite and other brittle-phase at a high cooling rate needs to be avoided.


2012 ◽  
Vol 1485 ◽  
pp. 83-88 ◽  
Author(s):  
G. Altamirano ◽  
I. Mejía ◽  
A. Hernández-Expósito ◽  
J. M. Cabrera

ABSTRACTThe aim of the present research work is to investigate the influence of B addition on the phase transformation kinetics under continuous cooling conditions. In order to perform this study, the behavior of two low carbon advanced ultra-high strength steels (A-UHSS) is analyzed during dilatometry tests over the cooling rate range of 0.1-200°C/s. The start and finish points of the austenite transformation are identified from the dilatation curves and then the continuous cooling transformation (CCT) diagrams are constructed. These diagrams are verified by microstructural characterization and Vickers micro-hardness. In general, results revealed that for slower cooling rates (0.1-0.5 °C/s) the present phases are mainly ferritic-pearlitic (F+P) structures. By contrast, a mixture of bainitic-martensitic structures predominates at higher cooling rates (50-200°C/s). On the other hand, CCT diagrams show that B addition delays the decomposition kinetics of austenite to ferrite, thereby promoting the formation of bainitic-martensitic structures. In the case of B microalloyed steel, the CCT curve is displaced to the right, increasing the hardenability. These results are associated with the ability of B atoms to segregate towards austenitic grain boundaries, which reduce the preferential sites for nucleation and development of F+P structures.


2003 ◽  
Author(s):  
J. D. Boyd ◽  
P. Zhao ◽  
J. Panatarotto ◽  
G. Nadkarni ◽  
T.G. Oakwood

2019 ◽  
Vol 38 (2019) ◽  
pp. 183-191 ◽  
Author(s):  
Yongfeng Qi ◽  
Jing Li ◽  
Chengbin Shi ◽  
Qintian Zhu

AbstractThe phase transformation behavior of crack-arrest steel during continuous cooling either with or without deformation at high temperatures was investigated. By carefully examining the microstructures of continuous cooled samples, we found that pearlite, quasi-polygonal ferrite (QPF), acicular ferrite (AF), granular bainite (GB), upper bainite, lath-like bainite and martensite/austenite will exist depending on cooling rates and transformation temperatures in both conditions of deformation and without deformation after austenization. The transformation curves of AF and GB moved toward the left in deformation condition in comparison with that of without deformation condition, which indicated that deformation promoted the formation of QPF and AF; meanwhile, deformation inhibited the formation of bainite. Finer bainite and the accompanying M/A could be obtained by reducing the bainite nucleation activation energy as follows: (i) increasing the undercooling by increasing the cooling rate; (ii) increasing the stored energy by deformation of the austenite.


2007 ◽  
Vol 26-28 ◽  
pp. 27-31 ◽  
Author(s):  
Hao Liu ◽  
Ding Zhong Zhong ◽  
Long Qi Zhao ◽  
Tao Peng ◽  
Li Xin Wu ◽  
...  

The dilatometry curves and the critical phase transformation temperatures of high strength low-alloyed (HSLA) cold rolled sheet steel were determined by thermal simulation test machine. The samples were austenitized at 900°C,deformed at 40% of deformation and cooled at different rates of 0.1°C/s~ 60°C/s. The continuous cooling transformation (CCT) diagram under deformation condition can be drawn. The results showed that the critical phase transformation temperatures are as follows: Ac3=900°C, Ac1=735°C, Ar3=825°C, Ar1=695°C. A few amount of martensite in high strength low-alloyed cold rolled steel can be obtained at the cooling rate of 60°C/s. The experimental data provide the technical references for rolling control, cooling control and heat treatment in real production.


Sign in / Sign up

Export Citation Format

Share Document