Adaptive sliding mode observer-based fault diagnosis for flight control system

Author(s):  
Hufenqiao ◽  
Jiang Bin
Author(s):  
Majeed Mohamed ◽  
Madhavan Gopakumar

The evolution of large transport aircraft is characterized by longer fuselages and larger wingspans, while efforts to decrease the structural weight reduce the structural stiffness. Both effects lead to more flexible aircraft structures with significant aeroelastic coupling between flight mechanics and structural dynamics, especially at high speed, high altitude cruise. The lesser frequency separation between rigid body and flexible modes of flexible aircraft results in a stronger interaction between the flight control system and its structural modes, with higher flexibility effects on aircraft dynamics. Therefore, the design of a flight control law based on the assumption that the aircraft dynamics are rigid is no longer valid for the flexible aircraft. This paper focuses on the design of a flight control system for flexible aircraft described in terms of a rigid body mode and four flexible body modes and whose parameters are assumed to be varying. In this paper, a conditional integral based sliding mode control (SMC) is used for robust tracking control of the pitch angle of the flexible aircraft. The performance of the proposed nonlinear flight control system has been shown through the numerical simulations of the flexible aircraft. Good transient and steady-state performance of a control system are also ensured without suffering from the drawback of control chattering in SMC.


Electronics ◽  
2019 ◽  
Vol 8 (11) ◽  
pp. 1350 ◽  
Author(s):  
Chen ◽  
Wu ◽  
Wu ◽  
Xiong ◽  
Han ◽  
...  

The unmanned aerial vehicle (UAV), which is a typical multi-sensor closed-loop flight control system, has the properties of multivariable, time-varying, strong coupling, and nonlinearity. Therefore, it is very difficult to obtain an accurate mathematical diagnostic model based on the traditional model-based method; this paper proposes a UAV sensor diagnostic method based on data-driven methods, which greatly improves the reliability of the rotor UAV nonlinear flight control system and achieves early warning. In order to realize the rapid on-line fault detection of the rotor UAV flight system and solve the problems of over-fitting, limited generalization, and long training time in the traditional shallow neural network for sensor fault diagnosis, a comprehensive fault diagnosis method based on deep belief network (DBN) is proposed. Using the DBN to replace the shallow neural network, a large amount of off-line historical sample data obtained from the rotor UAV are trained to obtain the optimal DBN network parameters and complete the on-line intelligent diagnosis to achieve the goal of early warning as possible as quickly. In the end, the two common faults of the UAV sensor, namely the stuck fault and the constant deviation fault, are simulated and compared with the back propagation (BP) neural network model represented by the shallow neural network to verify the effectiveness of the proposed method in the paper.


10.14311/748 ◽  
2005 ◽  
Vol 45 (4) ◽  
Author(s):  
D. J. McGeoch ◽  
E. W. McGookin ◽  
S. S. Houston

This paper presents an investigation into the design of a flight control system, using a decoupled non-linear sliding mode control structure, designed using a linearised, 9th order representation of the dynamics of a PUMA helicopter in hover. The controllers are then tested upon a higher order, non-linear helicopter model, called RASCAL. This design approach is used for attitude command flight control implementation and the control performance is assessed in the terms of handling qualities through the Aeronautical Design Standards for Rotorcraft (ADS-33). In this context a linearised approximation of the helicopter system is used to design an SMC control scheme. These controllers have been found to yield a system that satisfies the Level 1 handling qualities set out by ADS-33. 


2017 ◽  
Vol 89 (6) ◽  
pp. 764-776 ◽  
Author(s):  
Zhi Chen ◽  
Daobo Wang ◽  
Ziyang Zhen ◽  
Biao Wang ◽  
Jian Fu

Purpose This paper aims to present a control strategy that eliminates the longitudinal and lateral drifting movements of the coaxial ducted fan unmanned helicopter (UH) during autonomous take-off and landing and reduce the coupling characteristics between channels of the coaxial UH for its special model structure. Design/methodology/approach Unidirectional auxiliary surfaces (UAS) for terminal sliding mode controller (TSMC) are designed for the flight control system of the coaxial UH, and a hierarchical flight control strategy is proposed to improve the decoupling ability of the coaxial UH. Findings It is demonstrated that the proposed height control strategy can solve the longitudinal and lateral movements during autonomous take-off and landing phase. The proposed hierarchical controller can decouple vertical and heading coupling problem which exists in coaxial UH. Furthermore, the confronted UAS-TSMC method can guarantee finite-time convergence and meet the quick flight trim requirements during take-off and landing. Research limitations/implications The designed flight control strategy has not implemented in real flight test yet, as all the tests are conducted in the numerical simulation and simulation with a hardware-in-the-loop (HIL) platform. Social implications The designed flight control strategy can solve the common problem of coupling characteristics between channels for coaxial UH, and it has important theoretical basis and reference value for engineering application; the control strategy can meet the demands of engineering practice. Originality/value In consideration of the TSMC approach, which can increase the convergence speed of the system state effectively, and the high level of response speed requirements to UH flight trim, the UAS-TSMC method is first applied to the coaxial ducted fan UH flight control. The proposed control strategy is implemented on the UH flight control system, and the HIL simulation clearly demonstrates that a much better performance could be achieved.


Sign in / Sign up

Export Citation Format

Share Document