Comparative Study of the Torque Ripple and Iron Losses of a Permanent Magnet Synchronous Generator Driven by Multilevel Converters

Author(s):  
G. Mademlis ◽  
Y. Liu ◽  
J. Zhao
Author(s):  
K. Akkouchi ◽  
L. Rahmani ◽  
R. Lebied

Purpose. This article proposes a new strategy for Direct Power Control (DPC) based on the use of Artificial Neural Networks (ANN-DPC). The proposed ANN-DPC scheme is based on the replacement of PI and hysteresis regulators by neural regulators. Simulation results for a 1 kW system are provided to demonstrate the efficiency and robustness of the proposed control strategy during variations in active and reactive power and in DC bus voltage. Methodology. Our strategy is based on direct control of instant active and reactive powers. The voltage regulator and hysteresis are replaced by more efficient and robust artificial neuron networks. The proposed control technique strategy is validated using MATLAB / Simulink software to analysis the working performances. Results. The results obtained clearly show that neuronal regulators have good dynamic performances compared to conventional regulators (minimum response time, without overshoots). Originality. Regulation of continuous bus voltage and sinusoidal currents on the network side by using artificial neuron networks. Practical value. The work concerns the comparative study and the application of DPC based on ANN techniques to achieve a good performance control system of the permanent magnet synchronous generator. This article presents a comparative study between the conventional DPC control and the ANN-DPC control. The first strategy based on the use of a PI controller for the control of the continuous bus voltage and hysteresis regulators for the instantaneous powers control. In the second technique, the PI and hysteresis regulators are replaced by more efficient neuronal controllers more robust for the system parameters variation. The study is validated by the simulation results based on MATLAB / Simulink software.


Author(s):  
Youness El Mourabit ◽  
Aziz Derouich ◽  
Abdelaziz El Ghzizal ◽  
Najib El Ouanjli ◽  
Othmane Zamzoum

<span lang="EN-US">In this paper, we are interested in improving the production efficiency for electric energy extracted from a wind turbine, based on a permanent magnet synchronous generator (PMSG) that we want to improve the performance by means of direct torque control with space vector modulation (DTC-SVM). The choice of this control comes from the deficiencies inherent to the conventional DTC, which includes variable switching frequency, torque ripple and implementation complexity. First we focuse on the wind energy conversion system (WECS) modeling using the PMSG machine, as well as the detailed study for the control DTC-SVM operating principle. Then, system performance is tested and compared by simulation in the MATLAB/Simulink in terms of follow instructions, robustness to the variations of the external system elements, and effectiveness of the expected method.</span>


Sign in / Sign up

Export Citation Format

Share Document