A new power circuit topology for energy router

Author(s):  
Sizhao Lu ◽  
Zhengming Zhao ◽  
Junjie Ge ◽  
Liqiang Yuan ◽  
Ting Lu
2021 ◽  
Vol 49 (10) ◽  
pp. 3181-3188
Author(s):  
Harpreet Singh Grover ◽  
Francis Dawson

2020 ◽  
Vol 10 (10) ◽  
pp. 44-51
Author(s):  
Yury Yu. SKOROKHOD ◽  
◽  
Sehgey I. VOL’SKIY ◽  

The power circuit arrangements of on-board high-voltage static converters fed from a 3000 V AC single-phase network that in the general case produce multi-channel AC and DC output voltages are considered. The basic technical requirements posed to such converters are formulated. The general structural diagram of high-voltage converters with improved electric power consumption quality is given. Possible power circuit arrangements for the high-voltage converter input unit based on single-phase input current correction devices are considered. A classification and criteria for comparative evaluation of the possible power circuit arrangements of these devices are proposed. The information presented in the article will be of interest for specialists engaged in designing on-board electrical systems involving high-voltage converters that must comply with strict requirements for the quality of consumed single-phase input current.


Author(s):  
Franco Stellari ◽  
Peilin Song ◽  
James C. Tsang ◽  
Moyra K. McManus ◽  
Mark B. Ketchen

Abstract Hot-carrier luminescence emission is used to diagnose the cause of excess quiescence current, IDDQ, in a low power circuit implemented in CMOS 7SF technology. We found by optical inspection of the chip that the high IDDQ is related to the low threshold, Vt, device process and in particular to transistors with minimum channel length (0.18 μm). In this paper we will also show that it is possible to gain knowledge regarding the operating conditions of the IC from the analysis of optical emission due to leakage current, aside from simply locating defects and failures. In particular, we will show how it is possible to calculate the voltage drop across the circuit power grid from time-integrated acquisitions of leakage luminescence.


Designs ◽  
2021 ◽  
Vol 5 (2) ◽  
pp. 28
Author(s):  
Hyosung Kim

The medium voltage DC (MVDC) type system can connect multiple terminals to a common MVDC bus, so it is possible to connect several renewable DC power sources to the common MVDC bus, but a DC circuit breaker is needed to isolate short circuit accidents that may occur in the MVDC bus. For this purpose, the concept of a hybrid DC circuit breaker that takes advantage of a low conduction loss contact type switch and an arcless-breaking semiconductor switch has been proposed. During break the hybrid switch, a dedicated current commutation device is required to temporarily bypass the load current flowing through the main switch into a semiconductor switch branch. Existing current commutation methods include a proactive method and a reverse current injection method by a LC (Inductor-capacitor) resonant circuit. This paper proposes a power circuit of a new MVDC hybrid circuit breaker using a low withstanding voltage capacitor branch for commutation and a sequence controller according to it, and verifies its operation through an experiment.


Sign in / Sign up

Export Citation Format

Share Document