A Novel Differential Estimation Method of Rotor Displacement for Active Magnetic Bearings

Author(s):  
Jie Yu ◽  
Xinzhen Wu ◽  
Yuhao Zhang ◽  
Jiankun Li ◽  
Ronggang Ni
2013 ◽  
Vol 135 (4) ◽  
Author(s):  
Se Young Yoon ◽  
Zongli Lin ◽  
Wei Jiang ◽  
Paul E. Allaire

Surge is a dynamic flow instability that can cause extensive damage to compressors and other components. One common challenge that many surge control methods in the literature face when implemented in industrial applications is the unavailability of the high performance actuators and accurate flow rate measurements that are required to suppress surge. In this paper we present the experimental results of employing active magnetic bearings in order to suppress the surge instability in a centrifugal compressor. In addition, we compare how the selection of the flow estimation method affects the effectiveness of the implemented surge suppression controller. The experimental data demonstrates that the best combination of controller and flow estimator tested in this work allows the compressor to operate deep into the former surge region when the controller is activated, moving the minimum flow rate at the surge initiation point by 21%. This allows the compression system to operate at the highest efficiency/pressure point in the characteristic curve, while still retaining a very conservative surge margin separating the allowed compressor operating region from the surge inception point even if unexpected system changes occur.


Author(s):  
Se Young Yoon ◽  
Zongli Lin ◽  
Wei Jiang ◽  
Paul E. Allaire

Surge is a dynamic flow instability that can cause extensive damage to compressors and other components. One common challenge that many surge control methods in the literature face when implemented in industrial applications is the unavailability of the high performance actuators and accurate flow rate measurements that are required to suppress surge. In this paper we present experimental results of employing active magnetic bearings in order to suppress the surge instability in a centrifugal compressor. Also, we compare how the selection of the flow estimation method affects the effectiveness of the implemented surge suppression controller. Experimental data demonstrates that the best combination of controller and flow estimator tested in this work allows the compressor to operate deep into the former surge region when the controller is activated, moving the minimum flow rate at the surge initiation point by 21%. This allows the compression system to operate at the highest efficiency/pressure point in the characteristic curve, while still retaining a very conservative surge margin separating the allowed compressor operating region from the surge inception point even if unexpected system changes occur.


Sensors ◽  
2021 ◽  
Vol 21 (15) ◽  
pp. 5249
Author(s):  
Karel Kalista ◽  
Jindrich Liska ◽  
Jan Jakl

Verification of the behaviour of new designs of rotor seals is a crucial phase necessary for their use in rotary machines. Therefore, experimental equipment for the verification of properties that have an effect on rotor dynamics is being developed in the test laboratories of the manufacturers of these components all over the world. In order to be able to compare the analytically derived and experimentally identified values of the seal parameters, specific requirements for the rotor vibration pattern during experiments are usually set. The rotor vibration signal must contain the specified dominant components, while the others, usually caused by unbalance, must be attenuated. Technological advances have made it possible to use magnetic bearings in test equipment to support the rotor and as a rotor vibration exciter. Active magnetic bearings allow control of the vibrations of the rotor and generate the desired shape of the rotor orbit. This article presents a solution developed for a real test rig equipped with active magnetic bearings and rotor vibration sensors, which is to be used for testing a new design of rotor seals. Generating the exact shape of the orbit is challenging. The exact shape of the rotor orbit is necessary to compare the experimentally and numerically identified properties of the seal. The generalized notch filter method is used to compensate for the undesired harmonic vibrations. In addition, a novel modified generalized notch filter is introduced, which is used for harmonic vibration generation. The excitation of harmonic vibration of the rotor in an AMB system is generally done by injecting the harmonic current into the control loop of each AMB axis. The motion of the rotor in the AMB axis is coupled, therefore adjustment of the amplitudes and phases of the injected signals may be tedious. The novel general notch filter algorithm achieves the desired harmonic vibration of the rotor automatically. At first, the general notch filter algorithm is simulated and the functionality is confirmed. Finally, an experimental test device with an active magnetic bearing is used for verification of the algorithm. The measured data are presented to demonstrate that this approach can be used for precise rotor orbit shape generation by active magnetic bearings.


Sign in / Sign up

Export Citation Format

Share Document