Electrochemical migration and electrochemical corrosion behaviors in 3wt.% NaCl solution of 64Sn-35Bi-1Ag solder with in doping for micro-nanoelectronic packagings

Author(s):  
L. Hua ◽  
W. Dai ◽  
L. S. Duan ◽  
C. Y. Zhong
2013 ◽  
Vol 690-693 ◽  
pp. 82-88
Author(s):  
Xiao Dong Niu ◽  
Wei Sun ◽  
Xin Qiu ◽  
Jian Meng ◽  
Jian An

The microstructures and electrochemical corrosion behaviors of die-cast Mg-4Al-0.4Mn-xPr (x=0, 1, 4 wt.%) alloys have been investigated. Electrochemical behaviors of all alloys are described by open circuit potential test, potentiodynamic polarization test and electrochemical impedance spectroscope in 3.5 wt.% NaCl solution. The results show that the α-Mg grain is refined and the continuous net β phase appears gradually with increasing the content of Pr in the Mg-4Al-0.4Mn alloys. Moreover, the β phase plays a role of galvanic cathode in AM40 alloy and corrosion barrier in Pr-containing alloys, respectively. Electrochemical measurements show that Pr can improve corrosion resistance of Mg-4Al-0.4Mn alloy in the 3.5 wt.% NaCl solution, and corrosion rate decreases with increasing Pr content.


2014 ◽  
Vol 912-914 ◽  
pp. 338-341 ◽  
Author(s):  
Rui Yan ◽  
Ting Liang ◽  
Hong Chun Ren ◽  
Jin Gu ◽  
Zhuang Zhou Ji

Electrochemical corrosion behavior of epoxy aluminum coating immersed in 3.5%NaCl solution was investigated using electrochemical impedance spectroscopy (EIS). SEM was also used to analyze the surface images of coating, and the failure mechanism was discussed as well. The experimental results showed that corrosive species can penetrate into coatings and reach the coating/substrate interface promptly, causing the decrease of electro-resistance and the beginning of electrochemical corrosion at the coatings/metal interface. The coating was compact and continuous at beginning, while the blisters and cavities appeared after corrosion, which were formed osmotic pressure created by corrosion species penetration.


2011 ◽  
Vol 40 (7) ◽  
pp. 1556-1562 ◽  
Author(s):  
Jing Hu ◽  
Tingbi Luo ◽  
Anmin Hu ◽  
Ming Li ◽  
Dali Mao

2019 ◽  
Vol 66 (6) ◽  
pp. 827-834
Author(s):  
Kong Weicheng ◽  
Shen Hui ◽  
Gao Jiaxu ◽  
Wu Jie ◽  
Lu Yuling

Purpose This study aims to investigate the electrochemical corrosion performance of high velocity oxygen fuel (HVOF) sprayed WC–12Co coating in 3.5 Wt.% NaCl solution, which provided a guiding significance on the corrosion resistance of H13 hot work mould steel. Design/methodology/approach A WC–12Co coating was fabricated on H13 hot work mould steel using a HVOF, and the electrochemical corrosion behaviors of WC–12Co coating and substrate in 3.5 Wt.% NaCl solution was measured using open circuit potential (OCP), potentiodynamic polarization curve (PPC) and electrochemical impedance spectroscopy (EIS) tests. Findings The OCP and PPC of WC–12Co coating positively shift than those of substrate, its corrosion tendency and corrosion rate decrease to enhance its corrosion resistance. The curvature radius of capacitance curve on the WC–12Co coating is larger than that on the substrate, and the impedance and polarization resistance of WC–12Co coating increase faster than those of substrate, which reduces the corrosion process. Originality/value The electrochemical corrosion behaviors of WC–12Co coating and substrate in 3.5 Wt.% NaCl solution is first measured using OCP, PPC and EIS tests, which improve the electrochemical corrosion resistance of H13 hot work mould steel.


Materials ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2549
Author(s):  
Wenchao Yang ◽  
Jun Mao ◽  
Yueyuan Ma ◽  
Shuyuan Yu ◽  
Hongping He ◽  
...  

Electrochemical corrosion behavior of ternary tin-zinc-yttrium (Sn-9Zn-xY) solder alloys were investigated in aerated 3.5 wt.% NaCl solution using potentiodynamic polarization techniques, and the microstructure evolution was obtained by scanning electron microscope (SEM). Eight different compositions of Sn-9Zn-xY (x = 0, 0.02, 0.04, 0.06, 0.08, 0.10, 0.20, and 0.30 wt.%) were compared by melting. The experimental results show that when the content of Y reached 0.06 wt.%, the grain size of Zn-rich phase became the smallest and the effect of grain refinement was the best, but there was no significant effect on the melting point. With the increases of Y content, the spreading ratio first increased and then decreased. When the content of Y was 0.06 wt.%, the Sn-9Zn-0.06Y solder alloy had the best wettability on the Cu substrate, which was increased by approximately 20% compared with Sn-9Zn. Besides, the electrochemical corrosion experimental shows that the Y can improve the corrosion resistance of Sn-9Zn system in 3.5 wt.% NaCl solution, and the corrosion resistance of the alloy is better when the amount of Y added is larger within 0.02–0.30 wt.%. Overall considering all performances, the optimal performance can be obtained when the addition amount of Y is 0.06.


2013 ◽  
Vol 699 ◽  
pp. 645-649
Author(s):  
Chang Bin Shen

Similar welds composed of 5083 were produced by friction stir welding. In the solution of 0.2 M NaHSO3 and 0.6 M NaCl, with the addition of a given concentration sodium molybdate as the inhibitor, the electrochemical corrosion behaviors of the friction stir welds (FSW) and 5083 were comparatively investigated by potentiodynamic polarization curve tests and electrochemical impedance spectra (EIS) at the ambient temperature for different test periods. The results indicated that : with the extension of period, the inhibition efficiencies (IE) for both the weld and 5083 base materials enhanced, at the same period, the inhibition efficiency (IE) for the weld was beyond that for 5083 base materials, sodium molybdate may be thought of as an effective inhibitor for 5083 aluminum alloy, the interaction between inhibitor and weld is stronger than that between inhibitor and base materials.


2015 ◽  
Vol 42 (3) ◽  
pp. 0303007 ◽  
Author(s):  
周建忠 Zhou Jianzhong ◽  
钟辉 Zhong Hui ◽  
黄舒 Huang Shu ◽  
盛杰 Sheng Jie ◽  
戴磊 Dai Lei ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document