Quality inspection of optical lens in IC Packaging Equipment based on MTF

Author(s):  
Qihao Qian ◽  
Yunbo He ◽  
Zesheng Li ◽  
Shujin Liu ◽  
Huilong Liao
Author(s):  
Thomas M. Moore

In the last decade, a variety of characterization techniques based on acoustic phenomena have come into widespread use. Characteristics of matter waves such as their ability to penetrate optically opaque solids and produce image contrast based on acoustic impedance differences have made these techniques attractive to semiconductor and integrated circuit (IC) packaging researchers.These techniques can be divided into two groups. The first group includes techniques primarily applied to IC package inspection which take advantage of the ability of ultrasound to penetrate deeply and nondestructively through optically opaque solids. C-mode Acoustic Microscopy (C-AM) is a recently developed hybrid technique which combines the narrow-band pulse-echo piezotransducers of conventional C-scan recording with the precision scanning and sophisticated signal analysis capabilities normally associated with the high frequency Scanning Acoustic Microscope (SAM). A single piezotransducer is scanned over the sample and both transmits acoustic pulses into the sample and receives acoustic echo signals from the sample.


Author(s):  
H. Rose

The imaging performance of the light optical lens systems has reached such a degree of perfection that nowadays numerical apertures of about 1 can be utilized. Compared to this state of development the objective lenses of electron microscopes are rather poor allowing at most usable apertures somewhat smaller than 10-2 . This severe shortcoming is due to the unavoidable axial chromatic and spherical aberration of rotationally symmetric electron lenses employed so far in all electron microscopes.The resolution of such electron microscopes can only be improved by increasing the accelerating voltage which shortens the electron wave length. Unfortunately, this procedure is rather ineffective because the achievable gain in resolution is only proportional to λ1/4 for a fixed magnetic field strength determined by the magnetic saturation of the pole pieces. Moreover, increasing the acceleration voltage results in deleterious knock-on processes and in extreme difficulties to stabilize the high voltage. Last not least the cost increase exponentially with voltage.


Author(s):  
Raymond A. Lee ◽  
Patrick J. Wolpert

Abstract FIB Micromachining has long been an established technique, but until recently it has been overshadowed by the more mainstream semiconductor application of the Focused Ion Beam system. Nano- Structure fabrication using the FIB system has become more popular recently due to several factors. The need for sub-micron structures have grown significantly due to a need for enhanced optical and biological applications. Another reason for the growth in micromachining is the improvement made in the ability of FIB systems to produce geometric shapes with high precision. With the latest high-end FIB systems, it is possible to produce microstructures with tens of nano-meters of precision. Optical lens, AFM tips, and nano-apertures are all part of the growing application for FIB Micromachining. This paper will discuss the ability and limitations of the FIB system and some possible application for FIB Micromachining.


2015 ◽  
Author(s):  
Eric S. Richter ◽  
Arthur L. McClellan ◽  
Jack Harrington ◽  
Jeanne Kerr ◽  
Dan Gresham ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document