FIB Micromachining and Nano-Structure Fabrication

Author(s):  
Raymond A. Lee ◽  
Patrick J. Wolpert

Abstract FIB Micromachining has long been an established technique, but until recently it has been overshadowed by the more mainstream semiconductor application of the Focused Ion Beam system. Nano- Structure fabrication using the FIB system has become more popular recently due to several factors. The need for sub-micron structures have grown significantly due to a need for enhanced optical and biological applications. Another reason for the growth in micromachining is the improvement made in the ability of FIB systems to produce geometric shapes with high precision. With the latest high-end FIB systems, it is possible to produce microstructures with tens of nano-meters of precision. Optical lens, AFM tips, and nano-apertures are all part of the growing application for FIB Micromachining. This paper will discuss the ability and limitations of the FIB system and some possible application for FIB Micromachining.

Author(s):  
Romaneh Jalilian ◽  
David Mudd ◽  
Neil Torrez ◽  
Jose Rivera ◽  
Mehdi M. Yazdanpanah ◽  
...  

Abstract The sample preparation for transmission electron microscope can be done using a method known as "lift-out". This paper demonstrates a method of using a silver-gallium nanoneedle array for a quicker sharpening process of tungsten probes with better sample viewing, covering the fabrication steps and performance of needle-tipped probes for lift-out process. First, an array of high aspect ratio silver-gallium nanoneedles was fabricated and coated to improve their conductivity and strength. Then, the nanoneedles were welded to a regular tungsten probe in the focused ion beam system at the desired angle, and used as a sharp probe for lift-out. The paper demonstrates the superior mechanical properties of crystalline silver-gallium metallic nanoneedles. Finally, a weldless lift-out process is described whereby a nano-fork gripper was fabricated by attaching two nanoneedles to a tungsten probe.


1997 ◽  
Author(s):  
Gregory J. Athas ◽  
Kathryn E. Noll ◽  
Russell Mello ◽  
Raymond Hill ◽  
Don E. Yansen ◽  
...  

2004 ◽  
Vol 111 (1) ◽  
pp. 57-62 ◽  
Author(s):  
Biao Li ◽  
Xiaosong Tang ◽  
Huimin Xie ◽  
Xin Zhang

1999 ◽  
Vol 4 (S1) ◽  
pp. 769-774 ◽  
Author(s):  
C. Flierl ◽  
I.H. White ◽  
M. Kuball ◽  
P.J. Heard ◽  
G.C. Allen ◽  
...  

We have investigated the use of focused ion beam (FIB) etching for the fabrication of GaN-based devices. Although work has shown that conventional reactive ion etching (RIE) is in most cases appropriate for the GaN device fabrication, the direct write facility of FIB etching – a well-established technique for optical mask repair and for IC failure analysis and repair – without the requirement for depositing an etch mask is invaluable. A gallium ion beam of about 20nm diameter was used to sputter GaN material. The etching rate depends linearly on the ion dose per area with a slope of 3.5 × 10−4 μm3/pC. At a current of 3nA, for example, this corresponds to an each rate of 1.05 μm3/s. Good etching qualities have been achieved with a side wall roughness significantly below 0.1 μm. Change in the roughness of the etched surface plane stay below 8nm.


1999 ◽  
Vol 14 (6) ◽  
pp. 2196-2203 ◽  
Author(s):  
T. Y. Tsui ◽  
Joost Vlassak ◽  
William D. Nix

The plastic deformation behavior of Knoop indentations made in a soft, porous titanium/aluminum multilayered thin film on a hard silicon substrate is studied through use of the focused-ion-beam milling and imaging technique. Pileup is observed for indentations with depths larger than 30% of the total film thickness. Analysis of the indentation cross sections shows that plastic deformation around the indentation is partly accommodated by the closing of the pores within the multilayers. This densification process reduces the amount of pileup formed below that predicted by finite element simulations. Experimental results show that the pileup is formed by an increase of the titanium layer thickness near the edges of the indentation. The thickness increase is largest near the film/substrate interface and decreases toward the surface of the multilayered film. The amount of normal compression near the center of the indenter is characterized, and it is demonstrated that the deformation becomes more nonuniform with increasing indentation depth.


Sign in / Sign up

Export Citation Format

Share Document